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Abstract

The dynamics characteristics of the robotic arm system are usually highly nonlinear and strongly
coupling, which will make it difficult to analyze the stability by the methods of solving kinetic equa-
tions or constructing Lyapunov function, especially, these methods cannot calculate the quantitative
relationship between mechanical structures or control input and dynamics parameters and stability.
The theoretical analysis process from symbol dynamics modeling of the robotic arm system to the
movement stability is studied by using the concept of Lyapunov exponents method. To verify the al-
gorithm effectiveness, the inner relation between its joint input torque and stability or chaotic and
stable motion of the 2-DOF robotic arm system is analyzed quantitatively. As compared with its
counterpart of Lyapunov’s direct method, the main advantage of the concept of Lyapunov exponents
is that the methods for calculating the exponents are constructive to provide an effective analysis tool
for analyzing robotic arm system movement stability of nonlinear systems.

Key words: stability analysis, nonlinear systems, Lyapunov exponents (LEs) , 2-DOF robotic
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0 Introduction

Lyapunov’ s stability theory is of central impor-
tance for stability analysis of nonlinear systems, espe-
cially of robot control systems. The classical approach
to handle the stability and stabilization issues for dy-
namical systems is based on constructing a Lyapunov
function which satisfies sufficient conditions and guar-
antees stability. However, there is no constructive
method available for such derivation. Consequently,
stability of many nonlinear systems cannot be analyzed.

An alternative tool for the stability analysis of the
dynamical systems is the concept of Lyapunov expo-
nents(LEs). LEs, defined as the average exponential
rates of divergence or convergence of nearby orbits in
the state space, can indicate system stability!"*. Tt
was first introduced by Lyapunov to study the stability
of non-stationary solution of ordinary differential equa-

tions'*’

. It is a powerful tool to categorize the steady-
state behavior of dynamic systems. A LE is a number
that reflects the averaged exponential rate of divergence
or convergence of nearby orbits in the state space.

Generally the sum of all the LEs represents the average

volume contraction / expansion rate in a state space,
and the signs of LEs indicate the asymptotic property of
the dynamical system ( Williams 1997 )",
tractor of a dissipative system will have at least one

Any at-

negative exponent and the sum of all exponents is nega-
tive. More detailedly speaking, in a dissipative sys-
tem, an attractor is defined to be chaotic if the spec-
trum of LEs contains at least one positive exponent.
For non-chaotic attractors such as periodic or quasi-pe-
riodic ones, there are only zero and negative expo-
nents, while those exponentially stable equilibrium
points are those characterized by all LEs being nega-
tive. The method for calculating the LEs is constructive
for any dynamic systems. This constructive nature
makes it more advantageous over Lyapunov’ s direct
method.

For complicated systems, it is in generally impos-
sible to determine LEs analytically. LEs are usually
calculated numerically using a mathematical model.
The results can characterize the system stability provid-
ed that the numerical artifact is under control*'. Meth-
ods for calculating LEs based on a mathematical model

d[6,7]

have been well develope and widely used for diag-

nosing chaotic systems as well as stability analysis of
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complex nonlinear systems. For example, using LEs,
Asokanthan and Wang'®' studied the torsional stability
of a Hooke’ s joint driven system, and Gilat and Abou-
di'”! studied parametric stability of nonlinearly elastic
composite plates. Zevin and Pinski''”’ developed abso-
lute stability criterion for a non-autonomous linear sys-
tem controlled by a nonlinear feedback control with a
time-varying delay based on LEs. Awrejcewicz and
Kudra'" carried out the stability analysis of a multi-
body mechanical system with rigid unilateral constraints
via LEs. Rogelio, et al'"’.

nonlinear analysis of boiling water sector in a nuclear
J(13-18]

developed a method for
generator based on LEs. Wu, et a developed a
series of stability analysis of biped standing via the
concept of LEs. Liu'"?"
ysis of unmanned aerial vehicle using the LEs. There-

researched the stability anal-

fore, the theoretical analysis process from the symbol
dynamics modeling of the robot system to the movement
stability is studied using the concept of LEs method.
To verify the algorithm effectiveness, the inner relation
between its joint input torque and stability of the 2-
DOF robotic arm system is analyzed quantitatively,
which provides an effective analysis tool to analyze the
robot movement stability of nonlinear system.

1 Mathematical preliminary

Here, first the concept of Lyapunov exponents
(LEs) is reviewed, followed by a brief description of
procedures of calculating LEs based upon mathematical
models.

1.1 Concept of Lyapunov exponents

LEs A;(i= 1,---, n) are the average exponential
rates of divergence or convergence of nearby orbits in
the state space. Wolf, et al'''. (1985) defined a
spectrum of LEs in the manner most relevant to spectral
calculations. Considering a continuous dynamic system
in an n-dimensional state space, this concept monitors
the long-term evolution of an infinitesimal n-sphere of
initial conditions. Due to the dynamic flow, the n-
sphere may be deformed to an n-ellipsoid as graphically
shown in Fig. 1 when n =2. The average rates of the
length expanding or contracting of the ellipsoid princi-
pal axes over an infinite time period are called LEs.
The ith-dimensional LE is then defined in terms of the
length of the ellipsoidal principal axis || 8x,(t) | :

A FROY
A =lim—In—————, (i =1,---,n) (1)
e b 8w (1) |l

where || 8, (t,) || and | &, (¢) || represent the
lengths of the ith principal axis of the infinitesimal n-

dimensional hyper-ellipsoid at initial and current time
instances, ¢, and ¢, respectively. Since one LE can be
defined for each principal axis, the total number of sys-
tem LEs is equal to the dimension of the dynamic sys-
tem. Although in the calculation of LEs choosing a
trajectory (the °fiducial’ trajectory) is needed, the

I proves that

consequence of a theorem of Oseledec'’
LEs are global properties of the dynamic systems and
independent of the chosen trajectory ( ¢ invariant’
measure of the dynamic system). It is important to
note that the orientation of the ellipsoid changes contin-
uously as it evolves. Therefore, it is not possible to de-

fine the direction associated with a given exponent.

Initial hyper sphere (in 2D) Deformed hyper ellipse (in 2D)

Fiducial trajectory " 63,00} "

||8x1(to) "

Fig.1 Evolution of infinitesimal two-dimensional sphere

of initial conditions

Both the signs and values of a system LE have in-
formation about exponential behavior of the dynamic
systems. The signs of LEs reveal the stability property
of the system’ s dynamics. Negative exponents corre-
spond to those principal axes of the ellipsoid that shrink
in average. If all the exponents are negative, the dy-
namic system is exponentially stable and the attractor is
a fixed point ( equilibrium point). Zero exponents in-
dicate slow change in magnitudes of the principal axes.
A system with one zero exponent and other negative
ones has a one-dimensional attractor. For systems with
order 3 or more, the positive LEs indicate chaotic be-
havior. In a chaotic system, the long-term behavior of
an initial condition that is specified with any uncertain-
ty cannot be predicted''’. The sum of all LEs indicates
the time averaging divergence of the phase space vol-
ume; hence, for any dissipative dynamic systems, the

"'} which implies that

sum of all exponents is negative
dissipative systems have at least one negative expo-
nent. Moreover, dissipative systems with no fixed point
must have at least one zero exponent'”'’.

In general, there is no feasible analytical way to
determine the LEs for a complicated system'*'. There-
fore, the LEs are often computed numerically. They

can be computed using either the system mathematical
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model or a time series. In practical applications, the
finite-time LEs are frequently used in the following
form

[ RGO
T ey 0 T ()
in the limit as ¢ — , the finite-time LEs converge to
the true LEs'?’.

A

1. 2 Calculation of Lyapunov exponents using
standard algorithm

The standard algorithm for calculating the spec-

trum of LEs from explicit mathematical models of sys-

(1985). In

Wolf’ s pioneer work a fiducial trajectory (the centre of

tems was developed by Wolf, et al''’.

the sphere) is defined by the action of the nonlinear
motion equations on some initial conditions. The prin-
cipal axes are determined by the evolution via the lin-
earised equations of an initially orthonormal vector
frame anchored to the fiducial trajectory. This leads to
the following set of equations ( Wolf, et al. 1985) .

{1175 ©)

where i, is called the state transition matrix of the line-
arized system 8x (t) =s,0%, and the Jacobian F (1) is
defined as

F(ny = L (4)
0x
And the initial conditions for numerical integra-
[x() 1 fo) (5)
i, (1) 1

where [ is the identity matrix of proper dimension.

x = x(t)

tions are

To avoid misalignment of all the vectors dx; along
the direction of maximal expansion, they are reor-
thonormalised at each integration step by involving the
Gram-Schmidt reorthonormalisation ( GSR) scheme,
which generates an orthonormal set {u,,--+, u,| of n
vectors with the property that {u,, -, u,} spans the
same subspace as 8, ,--+, &v,. This orientation-preser-
ving property of GSR suggests that the initial labeling of
the vectors may be done arbitrarily. Fig.2 shows the
geometrical interpretation of the orthonormalisation for
two principal axes at the j-th step. Once the orthonor-

, u,} is produced by GSR,

for large enough integer K, one can obtain Lyapunov

mal vector frame {u,, -

exponents as follows with time-step size h properly cho-

sen:

~Lk %) o
A"~Khj§{ Inflw’ |, (i=12,,,n) (6)

where j is the number of integration steps.

_§yU . 1%
=8x —\prOJv(:, (&xY) o
\

\ /
N\ /
\\ //

—_——

Iproj ,(3x%)
/ 1

Fig.2 The geometrical interpretation of GSR for &x! and
) (j = 1,++, Kand j is the number of integration
step). 8x” and 6x)” are orthogonalised into v and

v and then normalised into u” and u{’. Here

Proj, ) (8x) denotes the projector of the vector 8x.”
on the vector v\, And v{ is exactly equal to 8x{’ —

Proj1;1(j) (5x§f) ).

Overall, the calculation of the Lyapunov expo-
nents from the system’ s mathematical model can be
shown in the following step:

Step 1 Establish dynamics model, with the stand-
ard form as:

q=V(qp
M(q)p + C(q,p)p + F(p,q,u) =0
Step 2 Transform model equation into state equation
B rx)
Step 3 Calculate Jacobian
I df(X)/dX Ty

Step 4 Calculate Lyapunov exponents

n-1

A= lim = Inl df(X)/dx 1,
=0

now I

2 2-DOF robotic arm

In this study, the 2-DOF robotic arm system, the
basic unit in the chain robot system, playing an impor-
tant role in the field of industrial production is shown in
Fig.3. A 2-DOF robotic arm system is a pendulum with

A

Fig.3 PUMAS60 robot
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a second pendulum attached to its end, exhibiting rich
dynamic behaviors. As shown in Fig. 4. The pendulum
system consists of two rigid links with length [, and [,.
The base of the system is fixed. m, and m,, are the
masses of the two links. r, and r,, are the locations of
the mass centers of the two links. 6, and @,, are the
joint angles. T, and T,, are the control torques applied
at both joints.

m,

Fig.4 2-DOF robotic arm model

The 2-DOF robotic arm model has 4 states. In the
this case the model can be generated in the form of

. . 24
Poincare’ s equatlonL I,

q=Vqp (7)

M(q)p +C(q,p)p +F(p,q,u) =0 (8)
where ¢ = (8,, 6,)" is the generalized coordinate vec-
tor, p = (wlx, w2x)" is the quasi-velocity vector. Key
parameters in the formulation are: kinematic matrix V
(q) , inertial matrix M(q), gyroscopic matrix C(q,
p), and force function F(p, q, u) includes all of the
gravitational forces and moments. Kinematic matrix in

Eq. (7) is of the

V(g) = H]

The parameters in dynamics of Eq. (8) are:
J, +J, +2kcos(0,) J, + kcos(8,)
M(q) = [ 1 2 2 2 2 ]
J, + kcos(6,) J

F(p,q,u) =
[—T1 —g(- (Iym, + myr,) sin®, — m,r, sin(9, +92))]
=T, + gm,r, sin(9, +6,)
0
C -
P.0) [;(KWszin(Hz) + 2kwlxsin(6,) )
- kwlxSin(6,) - 2Kw1x5in(6’2)]

- %lexSin( 0,)

where, J, =1, +m, -1, J, =1, +m, + 13, k=m, * [,
.7,

And the proportional and derivative (PD) control-
ler will be used to control the two-link pendulum sys-
tem having stable and chaotic motion, respectively.
For the PD controller, the torque at each joint is

T, =k, (0, -6,) +k; (0, -6,),i=1,2(9)
where 6, is the desired position or a periodic trajectory
to be tracked at each joint, k, and k, are the positive
proportional and derivative gains. By changing the con-
trol gains k&, and k,,, the system can exhibit either cha-
otic motion or stable motion. For the stable motion,
two simulations are carried out. One is to keep the
pendulum system at a set point, and the other is to
track a desired motion. For the chaotic motion, the
system is intended to track the desired trajectory. The

parameters of the two link pendulums are as follows

Table 1  Parameters of the two-link pendulums
Link Length Mass Mass centers of Inertia
(m) (kg) link (m) (kg - m’)
1 0.5 20 0.2 6
2 0.4 8 0.3 1.5

3 Stability analysis of the 2-DOF robotic arm

3.1 Simulation of chaotic motion

The desired trajectories are 6, =0.57 xsin(26,),
0, = 0.5 x0.57 xsin(26, ), controller gains are selected
as k,, =10(N/rad) , k, =2(NxS/rad), where i =1, 2,
and initial conduction {6, =0(rad), w,, =0(rad / s),
6, =0(rad) , w,, =0(rad/s) |. It can be seen easily that
link 1 and link 2 do not follow the desired trajectories in
Fig.5. The solid line and dash line are respectively actu-
al angular displacement and desired angular displace-
ment. The initial angular displacement is changed 6, =6,
=0.01(rad). The result of the attractor is changed sig-
nificantly, which demonstrates the system is sensitive to
the initial condition in Fig.6. In addition, the LEs for
chaotic motion from the mathematic mode are shown in
Fig.7. All exponents converging to constants, the largest
LEs greater 0 and the motion is indeed chaotic.

3.2 Simulation of stable tracking motion

By changing the gains in the PD controllers, the 2-
DOF robotic arm system can exhibit the stable motion. In
the case of stable tracking motion that the system follows,
the desired trajectory is also the 6,, =0.57 xsin(26,),
6,,=0.5x0.57sin (286, ) , the controller was chosen as
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Angular displacement of link 1 (rad)

0.04

0.02

-0.02

-0.04

(a) link 1

Angular displacement of link 2 (rad)

Fig.5 The chaotic motion for the link 1 and 2

Angular velocity of link 1 (rad/s)

®1[—————— Angular displacement of link 1 rad
-0.06-0.04-0.02(8 ().040.06

Fig.6 Attractor of chaotic motion link 1

Lyapunov exponent

Fig.7 The Lyapunov Exponents for chaotic motion

k, =30(N/rad), k, =5(N xS / rad), k, =12(N/
rad), k, =3(N xS/rad) in the simulations. The initial
conduction is also {#, =0(rad), w,, =0(rad/s), 6, =0
(rad), w,, =0(rad / s)}. The dash lines are the desired
trajectories and the solid lines are the actual trajectories.
Fig.8 shows link 1 and link 2 stable tracking motion.
That is, the 2-DOF robotic arm system can successfully
follow the desired trajectory by using suitable controller
gains. Correspondingly, by changing the initial angular
displacement 9, =6, =0.01 (rad) , the attractor is shown
in Fig.9. Similar to the chaotic motion, there are four
negative exponents for the stable tracking, and four nega-
tive exponents indicate that the trajectories converge to

the desired (See Fig. 10).
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Fig.8 The stable tracking motion for the link 1 and 2
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Fig.9 Atiractor of stable tracking motion
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Meanwhile, the second case for the simulation of
stable motions is that the robotic arm system is controlled
to approach the set point. The gains in the PD controller
are still set as k, =30(N/rad), k, =5(NxS/rad), k,
=12(N/rad) , k, =3(N xS/rad). The system will start
from the initial condition {6, =1(rad), w,, =0(rad/s),
0, =1(rad), w, =0(rad/s) |, then controlled by the PD
controller to approach point {#, =0(rad), w, =0(rad/s),
6, =0(rad), w,, =0(rad / s)}. The angular dis-
placements of link 1 and link 2 are simulated shown in
Fig. 11. The equilibrium point approximately {0, O,
0, 0} is shown in the phase space in Fig. 12. The LEs
for stable motion with a set point are shown in Fig. 13.

Summarily, the angular displacement of each link
is simulated. The attractors of chaotic, stable motion
are also shown. Results show that the robotic arm sys-
tem can exhibit different motions under different control
parameters. Also it is valid by using the concept of

LEs.

Lyapunov expontent

2r,
i
. "‘.
O n Y .
0 8 WA~ o, T
P20 Va4l Me0TVROT00 120
. e,y P e
=1t - :-‘f“{f'- PR W TN
% v ° ® 'ﬁ“.‘bﬁ
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2[00 00w
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Fig.10 Lyapunov exponents for stable tracking motion

Angular displacement of link (rad)
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e Time(s)
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Fig.11 Stable response with a set point

4 Conclusions

Two different types of stability have been rigorous-
ly analyzed in this article using the concept of LEs for a
2-DOF robotic arm model : chaotic motion with disturb-
ance imposed on the initial conditions, and stable mo-
tion with changing control gains. Moreover, the LEs

Angular velocity of link 1 (rad/s)

0.02
0.01 +
. . , Angular displacement of link1 (rad)
-0.010 -0.005 .010
-0.01 -
-0.02 L

(a) link 1

Angular velocity of link 2 (rad/s)
0.010

0.005

) Angular displacement of link 2(rad)
5 0.010

-0.010 -0.005 0l

-0.005

-0.010
(b) link 2
Fig. 12  Attractor response for the stable motion with a set point

Lyapunov exponents

K 20 40 60 80 100

Time(s)
0

_10 L

Ll
_15 .l.
20l

Fig. 13 Lyapunov Exponents for stable motion with a set point

are an ‘invariant’ measure of the dynamic systems,
that is, the LEs are independent of initial conditions.
The main contribution of this article lies in the fact
that, starting from the symbol dynamics modeling to
stability analysis the concept of LEs is used to change
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the controller gain and obtain different states. As dis-
cussed earlier, the presented method for calculating
LEs is applicable to general dynamic systems provided
that the mathematical models are available. Therefore,
the proposed method can be extended to more complex
models, especially to multi-body dynamics, which is
the subject of future work.
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