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Abstract

There are growing concerns surrounding the data security of social networks because large
amount of user information and sensitive data are collected. Differential privacy is an effective meth-
od for privacy protection that can provide rigorous and quantitative protection. Concerning the appli-
cation of differential privacy in social networks, this paper analyzes current trends of research and
provides some background information including privacy protection standards and noise mechanisms.
Focusing on the privacy protection of social network data publishing, a graph-publishing model is
designed to provide differential privacy in social networks via three steps: Firstly, according to the
features of social network where two nodes that possess certain common properties are associated with
a higher probability, a raw graph is divided into several disconnected sub-graphs, and correspond-
ingly dense adjacent matrixes and the number of bridges are obtained. Secondly, taking the advan-
tage of quad-trees, dense region exploration of the adjacent matrixes is conducted. Finally, using an
exponential mechanism and leaf nodes of quad-trees, an adjacent matrix of the sanitized graph is re-
constructed. In addition, a set of experiments is conducted to evaluate its feasibility, availability and
strengths using three analysis techniques: degree distribution, shortest path, and clustering coeffi-

cients.
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0 Introduction

In recent years, information networks have experi-
enced a rapid growth in various fields including social
networks and the internet of things, in which the per-
formance of social networks is especially striking. Fa-
cebook and Twitter now have more than one billion ac-
tive users worldwide. Large amounts of network data
are collected, including much personal information and
sensitive data. Analyzing these data can offer signifi-
cant potential benefits, but simultaneously users’ pri-
vacy may be seriously threatened'''. Therefore, greater
attention is now being paid to the security of the net-
work data.

There are a number of available privacy protection
methods, including k-anonymity and [-diversity, which
are based on restricted release. First, k-anonymity de-
signed by Sweeney'?’ | guarantees that any record is in-
distinguishable with other £ — 1 records but is also vul-
nerable to consistency attack'®'. To address this prob-
lem, Machanavajjhala, et al. "* proposed an I-diversity

principle: for a dataset with k-anonymity, each sensi-
tive property of the equivalent class has at least [ values
so that the risk of privacy disclosure is less than 1/1.
However, this method is also vulnerable to consistency
and background knowledge attacks because of the lack
of a strict attack model.

In order to solve those problems, Dwork, et al. ">’
proposed differential privacy, which is a relatively new
notion of privacy and has become the de facto standard

for a security-controlled privacy guarantee'®’.

If an at-
tacker can access the information of all other records in
addition to the target record in a dataset, the sum of
those messages is regarded as the maximum background
knowledge that the attacker masters. Under this as-
sumption, differential privacy can defend against a
background knowledge attack. Differential privacy is
also built on solid mathematical foundations which
greatly ensure the availability of data by giving quanti-
tative representation and proof to the risks of privacy
disclosure. With these advantages, differential privacy
has been widely applied in various fields. When ap-
plied to network data, there are two common privacy
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protection standards. One is node privacy!”', which
adds or removes an arbitrary node from the original
graph and all edges are connected to it. Hence, an at-
tacker cannot determine whether an individual node is
in the graph. Thus, node privacy is able to completely
protect all individuals. However, it is unfeasible in
many cases because it imposes extreme server restric-
tions on queries. The other protection standard is edge
privacy , which adds or removes an edge from the origi-
nal graph. An attacker cannot determine whether a re-
lationship exists between the individual nodes though it
is a high probability. It offers a weaker guarantee than
node privacy but is sufficient for many applications.
Edge privacy is regarded as a more reasonable ap-
proach when combining differential privacy with net-
work data, and has been widely applied *""’. Task, et
al. proposed out-link privacy'?' | which added or re-
moved an arbitrary node and all of its out-links, which
enables many queries to be unfeasible under both node
and edge privacy. Gehrke, et al. created zero-knowl-
edge privacy using cryptography information'™', which
could provide better applications in social networks.

In terms of graph mining, Hay, et al. queried
private degree distribution using differential priva-
cy' ™. Nissim, et al. proposed the concept of smooth
sensitivity to count Laplace noise and calculate the
number of triangles, k-star, and k-triangle while provi-
! Wang, et al. looked at
clustering coefficients and applied the concept of “di-

ding differential privacy''

vide and conquer” to realize private queries''®’. There
is also a number of studies regarding graph publishing.
Chen, et al. """ showed that differential privacy could
provide provable privacy guarantees in a correlated set-
ting, and proposed a method of density exploration and
reconstruction (DER) ; a quad-tree was used to divide
the adjacent matrix of the original graph into several re-
gions, and then a sanitized graph was reconstructed

1. ") made use of a

with differential privacy. Sala, et a
dk-model to build sanitized graph to maintain structural
similarity with the original graph.

According to previous studies, when applying dif-
ferential privacy to graph publishing, it is important to
ensure the usefulness of the released data. Concerning
differential privacy applied to social network data pub-
lication, the features of social networks are analyzed.
Taking Facebook as an example, it is more likely that
users will be friends with users in a common interest.
Based on this consideration, a graph-publishing model
called classification-based graph-publishing model (CGM)
is proposed.

In detail, the work includes the following aspects

1) According to the property of social networks

and the application of differential privacy in a correla-
ted dataset, the original graph is first divided into mul-
tiple subgraphs on the basis of node properties. Thus,
the connection between edges will be stronger inside a
subgraph and weaker between subgraphs.

2) For each sub-graph, a quad-tree is used to ex-
plore dense regions, and according to the leaf nodes of
the quad-tree, corresponding new sub-graphs are re-
constructed which are included in the whole sanitized
graph.

3) Degree distribution, shortest path, and cluste-
ring coefficients are used as measurement methods.
Several experiments are conducted to analyze the sani-
tized graph’s structural consistency.

1 Social network graph-publishing prob-
lem statement

1.1 Differential privacy protection model
In this study, adjacent matrix A of graph G is used
to abstractly represent a social network. Furthermore,

G=(V,E),A={1 if (v, v;) e E

) , Vis a set of
0 otherwise
nodes and £ is a set of edges. In a region R € A and

| RI = m x [, the density of R is den(R) =

m 1
Z o Z j:iR,;j/ml.

The definition of differential privacy is based on
the concept of neighboring databases. Thus, for data-
base D, D' is its neighboring database, if and only if
| DAD'| = 1 where DAD' denotes symmetric differ-
ence.

Definition 1'"' ( g-differential privacy ) Mecha-
nism M is g-differential privacy for any two neighboring
databases D and D'. P, is the outputs of Mechanism M
and S, is any subset of outputs P,. The following
hOldS;

P,[M(D) e Sy] <exp(e) xP[M(D") €S,]

(D)
where probability P, is the randomness of M and ¢ is the
privacy budget.

A mechanism can satisfy differential privacy by
adding appropriate noises to the results of the query
functions. Two common noisy techniques are the La-
place mechanism and the exponential mechanism. A
fundamental concept applied to count noise is global
sensitivity.

Definition 2"’ ( Global sensitivity ) For function
f:D — R, the input is database D and output is real
vector R”. For any two neighboring databases D and D',
the global sensitivity of f'is

S, = max |£CD) =f(D") |, (2)
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A. Laplace Mechanism

This is applied to the privacy of numerical results.
Furthermore, Lap( o) denotes the Laplace distribution
where the mean is zero and the scale parameter is o.

Its probability density function is f(x | 0,0) = ZL
o

"7 \here o is decided by global sensitivity GS,and
privacy budget &.

Theorem 1 ™ For database D, for any function
f: D — R’ global sensitivity GS;, the mechanism ¥
gives g-differential privacy if it satisfies .

M(D) = f(D) + Lap(GS /&) (3)

B.  Exponential Mechanism

[20]

This is applied to the privacy of entity objects.
The input is database D and output is an entity r €
Range. Furthermore, q( D, r) denotes the utility func-
tion of r used to evaluate the result’ s merits, and GS,
denotes the global sensitivity of g(D, 7).

Theorem 2'*'' For a database D, its utility func-
tion is (D, r). If mechanism M selects result r as the
output from Range with a probability proportional to
eq(D, r)

2GS,

Using the sequential composition of differential

exp( ) , M gives g-differential privacy.

privacy, McSherry'”' divides the original graph into

several subgraphs, each of which provides differential
privacy. Combining these subgraphs can also provide
differential privacy.

Theorem 3% For mechanisms M, M,, - M

the corresponding privacy budget is g, ,¢&,,

n?

’811 b and
when applying to the same database D, a sequence of
M(M, (D), My(D) -+, M,(D)) gives ( X" &

differential privacy.

1.2 Graph-publishing problem statement

The goal is to generate a sanitized graph that
maintains structural consistency with the raw graph so
that the published data is useful. Several analysis tech-
nologies are used to assess its utility, as detailed be-
low.
A. Degree distribution

Degree distribution is a critical concept in network
theory, and is a widely studied feature of graphs. Giv-
en graph G = G(V, E), V = {v,,v,,--,v,| is the set
of nodes and £ = {e, ;1 i =1,2,-

ni is the set of edges. Then the degree of node v, is the

’n’j:1’2’...’

number of all edges connected to it.

Definition 3 ( Degree frequency sequence) Given
eraph G, d(v) represents the degree of node v and
f(G) denotes the degree frequency sequence of G. The
| {v, € vid(v;,) =1} |

I VI

i-th value in f( G) is

Given the degree frequency sequence of the origi-
nal graph G and sanitized graph G', f(G) and f(G") ,
their difference is measured with Kullback - Leibler
divergence which is also called relative entropy, meas-
uring the difference between two probability distribu-
tions of the same event space.

DKL(f<G),f(G)) Zf(c)[ ]logf( )[ J

f(6)[1]
(4)

B. Shortest path

In graph G, if node v; and v; are reachable, a path
between the two nodes can be defined as a sequence
(V5 vy, 0, 0) € VX Vxe xV, where (v,
v;,;) € E. The length of the path is the number of ed-
ges involved in its sequence. Then, the shortest path
between two nodes v; and v; is the minimum length of all
paths between them. If nodes v, and v; are not reach-
able, the length of the shortest path is denoted as oo .
C. Clustering coefficient

This coefficient indicates the nodes’ degree of ag-
gregation in a graph. The formula is

oM NG -
N (i) di(d,-1)72

where C; denotes the clustering coefficient of node i,

N, (i) denotes the number of triangles involved in
node 7, N, (i) is the number of connected triples with
node i in the center, and d; shows the degree of node .
Given the clustering coefficient of the original
eraph and sanitized graph, C(G) and C(G') , the util-
ity loss over G’ is measured by its relative error;
) | C(G) -C(G") |
error(G(G')) = c(c)

(6)

D. Betweenness centrality

Betweenness reflects the role and influence of re-
spective nodes or edges in the network , which contains
Edge be-

tweenness is defined as the proportion between the

edge betweenness and node betweenness.

number of shortest paths through the edge and the total
number of shortest paths in the network. Node be-
tweenness is defined as the proportion between the
number of shortest paths through the node and the total
number of shortest paths in the network. Given the
edge and node betweenness of the original graph and
sanitized graph, B(G) and B(G'),

measured by its Euclidean distance.

sim(B(G), B(G")) =

the similarity is

1
1 +E(B(G), B(G"))
(7)
where E(B(G), B(G") ) denote Euclidean distance of
B(G), B(G'). The formula is:
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E(B(G), B(G')) = /(Y (B(G), -B(G"),)*)

(8)

2 Classification-based graph publishing
model and algorithm

This study investigates the application of differen-
tial privacy in a correlated data setting. Most data in a
social network are related. A database with correlation
parameter £ means that any record in the database is
correlated to at most k£ — 1 other records. With privacy
budget &, at most k records are divided into a group.
Taking a “group” as a unit, it is sufficient to eliminate
the effect of data correlation on any computation. Then
it is possible to provide e/k-differential privacy. The
CGM algorithm is shown as Algorithm 1. The algorithm
procedure of CGM is composed of three steps:

1) Graph classification: In this procedure, the
goal is an adjacent matrix which is formed of dense
clusters. Regarding a social network, two nodes with a
certain characteristic are more likely to be associated.
According to this feature and the concept of “bridge” ,
the raw graph is classified into multiple subgraphs. It
is then more likely that the adjacent matrix of the sub-
graph will be dense. The number of bridges should also
be recorded at the same time.

2) Exploration of the dense region: For each sub-
graph, a standard quad-tree is used and the dense re-
gion is explored to reconstruct a sanitized adjacent ma-
trix with greater accuracy. This procedure produces a
noisy quad-tree where the nodes of the tree indicate re-
gion size and a noisy count of 1s. The main challenge
is to determine the height of the tree and select the
splitting point.

Algorithm 1 CGM algorithm

Input. Raw graph G , Privacy budget & , Correlation parame-
ter k
Output; Sanitized graph G’

1. % =g teptep

2. Subgraphs C; «— Graph classification (G,g.)

3. Generate the adjacent matrix A; from C,

4. Noisy quad-tree QT; «— Explore dense region (A, , &)

5. Sanitized matrix A, 7 Reconstruct adjacent matrix ( QT ,
A er)

6. Reconstruct sanitized graph G’ based on A;’

7. Return G’

3) Reconstruction of the adjacent matrix: Accord-
ing to the leaf nodes of the quad-tree, and the expo-
nential mechanism is used to arrange the distribution of

Is in corresponding regions to construct the sanitized
adjacent matrix.

The input of the model is graph G, privacy budget
& and correlation parameter k. The output is the sani-
tized graph G'. Throughout the whole procedure, the
sum of the privacy budget is £/k. It is divided into &,

&y, &x, corresponding to every step.

2.1 Graph classification

The different vertex labels of the graph will have
different adjacent matrixes. In a social network individ-
ual users with common interests are more likely to have
relationships. Thus, the idea of “ classification” is
used to divide the raw graph into multiple disconnected
subgraphs. The adjacent matrix of a subgraph will be
dense clusters of 1s.

The edges connecting the two subgraphs are
“bridges”. Given graph G, E’ is the cut set of G if
the following holds: (E" € E, P(G - E') > P(G)
and (E" CE', P(G - E") = P(G) where P(G) de-
notes the number of connected components. If there
exists ' = {el, eis a bridge. Kosaraju algorithm is
an algorithm calculating a strongly connected compo-
nent, which can find the strongly connected component
in a time complexity of O(V + E). The process is as
follows: First, it conducts a depth-first search in graph
G and count time T when each node has been
searched. Second, it conducts a depth-first search in
the inverse graph GT. At this moment, the searching
order is decided by the values of T, not by the vertex
labels. Finally, the obtained forest from the inverse
graph GT is the corresponding connected component.

While classifying the raw graph, the noisy count
of bridges is recorded. The basic flow of “graph classi-
fication” is as follows.

Procedure 1 Graph classification procedure

Input: Raw graph G, Privacy budget &,
Output; Subgraph C,, Br'(G)
1. Apply Kosaraju algorithm to G
2. Generate Subgraph C; and the corresponding bridge
Br(G)
3. Get Br'(G) with g,
4. Return C; and Br'(G)

When calculating the number of bridges Br' (G) ,
Laplace noise is added to provide differential privacy.
Furthermore, GS( Br) denotes the global sensitivity of
Br(G) , and satisfies GS(Br) = 1.

Br'(G) = Br(G) + Lap(GS(Br) /&) (9)

Taking Fig. 1 as an example, it’ s the original



138

HIGH TECHNOLOGY LETTERSIVol. 24 No. 21 ]June 2018

graph. After the processing, a sanitized graph will be
generated, and the feasibility of this model will be
evaluated through further experiments.

Fig.1 A sample graph

Example 1 Considers the graph in Fig.1. The
possible classifying results are as follows C, = {1,2},
c, = {3}, C, = {4,5,6,7,8,9,10,11}, the noisy
count of bridges is 3 which may includes edge (4, 3).

2.2 Reconstruction of adjacent matrix

After carrying out the first step, the corresponding
adjacent matrix of each sub-graph is obtained. Next,
those regions that are the most dense or sparse using a
quad-tree are explored. To create a quad-tree, a two-di-
mensional space is divided into four subspaces iteratively.

The process is as follows. First, according to the con-
dition of leaf nodes, calculate the height of the tree.
Regarding those non-leaf regions, select the best split-
ting point using the exponential mechanism, making
use of the following maximal density contrast function
g(R, p) = max(den(R")) - min (den(R"))
where R € A, p is one splitting point over R and R is
the set of subregions of R resulting from p. The nodes
in the tree are made up of two segments; the region R
and the noisy count of 1s within the region, denoted by
c.

Example 2 Considers the subgraph C, = {4,5,6,
7,8,9,10,11} of the graph in Fig. 1 and its adjacency
matrix in Table 1. Suppose the height of quad-tree is
calculated to 2. The first possible parting result is R,
=[4.7,4.7], R, = [4:7,8:11], R, = [8:11,4;
7], R, = [8:11,8:11]. According to the noisy
count, CGM model needs to further partition R,. After
that, the corresponding quad-tree is illustrated in

Fig. 2.

Region Noisy count
Al4:11, 4:11]
Al4:7,4:7]1| 9 Al4:7,8:11]] 13 A[8:11,4:7]| 8 A[8:11,8:11]| 3
A[4:5,89]| 1 Al4:5,10:11] | 0 Al6:7,8:9]| 4 Al6:7,10:11] | 2

Fig.2 A sample quad-tree of C,

Table 1  The adjacency matrix of C,

4 5 6 7 8 9 10 11
4 0 1 1 0 1 0 0 0
5 1 0 1 1 0 1 1 0
6 1 1 0 0 1 1 0 0
7 0 1 0 0 1 0 1 0
8 1 0 1 1 0 0 0 0
9 0 1 1 0 0 0 0 1
10 0 1 0 1 0 0 0 0
11 0 0 0 0 0 1 0 0

In the first step, adopt global sensitivity to com-
pute the noise of the bridges to provide differential pri-
vacy. The process of proof-satisfying differential priva-
cy in the second and third step is based on Chen, et
al. """, Thus, the procedure of constructing every san-
itized graph conforms to the condition of differential

privacy. Finally, according to the sequential composi-
tion, combine each sanitized subgraph into the whole
sanitized graph. The noisy bridges are also randomly
added to the graph. Then the entire process of con-
structing a sanitized graph is completed. Considering
the graph in Fig. 1, After using CGM model ,the possi-
ble sanitized graph may be Fig. 3.

Fig.3 The sanitized graph
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3 Experimental evaluation

All experiments in this paper are simulated on PC
(Intel (R) Core ( TM ) 1i7-8700 CPU, 8GHz,
16GRAM) , the operating system is Windows 10 with
Visual C + 4+6.0 coding environment.

The CGM’ s feasibility is evaluated via experi-
ments using degree distribution, shortest path and clus-
tering coefficients, and compared with the DER method
to assess their advantages or disadvantages. The data-
sets used in the experiments are ego-Gplus, ego-Face-
book, Wiki-vote and soc-Epinionsl, which are from
the Stanford Network Analysis Project. Ego-Gplus con-
sists of “circles” from Google + , where data were col-
lected from users who had manually shared their circles
using the “share circle” feature. Ego-Facebook con-
sists of “circles” or “friends lists” from Facebook,
where data were collected from survey participants
using the Facebook app. Wiki-vote contains the Wiki-
pedia voting data from the inception of Wikipedia.
Nodes in the network represent Wikipedia users and a
directed edge from node i to node j represents that user i
voted on userj. The data of soc-Epinions]l comes from
a general consumer review site about “ who-trust-
whom”. All the trust relationships of members in the
site interact and form the Web of Trust. According to
the Trust Web, reviews that are shown to the users
could be determined through review rating.

Applying CGM and DER methods to ego-Gplus,
ego-Facebook, Wiki-vote and soc-Epinionsl, corre-
sponding sanitized graphs are obtained. Making use of
those metrics in Section 2.2, the following experimen-
tal results are obtained where the correlation parameter
isk = 15 and the values of privacy budget & are 0.6,
0.7, 0.8, 0.9, and 1. Table 2 shows datasets in the

experiments.

Table 2 Experimental datasets

Datasets 0.21VI 0.41VI 0.61VI 0.81VI VI
ego-Gplus 21522 43044 64566 86088 107614

ego-Facebook 807 1615 2421 3288 4039

Wiki-vote 1423 2846 4269 5692 7115
soc-Epinions] 15175 30351 45527 60703 75879

In the first set of experiments, the utility of the
clustering coefficient is examined in terms of the aver-
age relative error. The related parameters are similar to
the previous settings. Table 3 shows the experimental
results in ego-Gplus, ego-Facebook, Wiki-vote and
soc-Epinionsl. With the increase of the privacy budg-
et, the average relative error gradually decreases. In
ego-Facebook Dataset, the error shows a steady down-
ward trend, which indicates that CGM and DER ap-
proach work better. In Wiki-vote Dataset, the applica-
bility is poor. When the privacy budget is larger, the
query results of CGM model have a higher accuracy.

Table 3 Some experimental results

Measurement privacy DER CGM DER ( ego- CGM (ego- DER CGM DER (soc- CGM(( soc-

budget  (ego-Gplus)  (ego-Gplus) Facebook ) Facebook ) (Wiki-vote)  ( Wiki-vote) Epinionsl ) Epinions])
Average 0.6 0.58 0.51 0.56 0.44 0.68 0.61 0.49 0.45
relative 0.7 0.45 0.35 0.42 0.35 0.6 0.52 0.45 0.37
error of 0.8 0.35 0.3 0.3 0.28 0.52 0.48 0.4 0.29
clustering 0.9 0.22 0.18 0.23 0.17 0.5 0.3 0.35 0.2
coefficient 1 0.16 0.05 0.12 0.06 0.45 0.2 0.25 0.15
Average 0.6 0.8 0.7 0.6 0.59 0.68 0.61 0.58 0.42
relative 0.7 0.63 0.6 0.5 0.4 0.65 0.55 0.5 0.4
error of 0.8 0.4 0.35 0.4 0.32 0.59 0.5 0.43 0.3
the shortest 0.9 0.35 0.24 0.25 0.21 0.5 0.4 0.32 0.22
path 1 0.18 0.21 0.18 0.1 0.43 0.35 0.3 0.15
0.6 0.94 0.81 0.72 0.67 0.82 0.75 0.83 0.6
KL-divergence 0.7 0.85 0.78 0.6 0.56 0.8 0.66 0.78 0.57
of degree 0.8 0.69 0.62 0.57 0.43 0.75 0.58 0.7 0.44
distribution 0.9 0.62 0.6 0.48 0.37 0.69 0.49 0.59 0.36
1 0.52 0.5 0.36 0.3 0.6 0.39 0.51 0.3

In the second set of experiments, the utility of the
shortest path of the sanitized graph is demonstrated by
the average relative error. From Table 3 it can be seen
that the CGM’ s error value shows a steady declining
trend. And compared with DER method, the proposed

method produces a lower error values and has stronger
usefulness in Wiki-vote and soc-Epinionsl.

In the third set of experiments, the utility of the
sanitized data for the degree distribution are measured
by KL-divergence. In Table 3, it can be observed that
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the KL divergences of CGM are smaller than DER in
all settings. Especially in soc-Epinionsl Dataset, with
the increase of privacy budget, the distance value is
generally smaller. Therefore, this approach is more
suitable to preserve degree distribution.

Also, the structure consistency between published
graph and original graph is measured by the number of
edges and the number of nodes. The results of the ex-
periment are shown in Fig. 4 and Fig. 5. It can be seen
from the results that the Euclidean distance of the edge

betweenness and the node betweenness is smaller, in-
dicating the higher similarity. With the increase of the
privacy budget, the distance values are steadily decrea-
sing, and there is no obvious gap between the CGM
and the DER methods. In the case of small budget val-
ue, the difference is obvious. With the increase of the
budget value, the gap gradually decreases. Fig.5(a)
shows that the CGM method is more applicable on the
ego-Gplus dataset.

0.2

Euclidean distance
Euclidean distance

0.4
0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9

Privacy budger Privacy budger
(a) ego-Gplus (b) ego-Facebook

— CGM
-+~ DER

N\ - CGM
N --- DER S

e
A

Euclidean distance

Euclidean distance

1 06 07 08 09 1
Privacy budger
(d) soc-Epinions1

0.6 0.7 0.8 0.9
Privacy budger

(c) Wiki-vote

Fig.4 Euclidean distance of edge betweenness

— CGM
N -=- DER

Euclidean distance
Euclidean distance
o
2

0.6 07 08 09
Privacy budget

(a) ego-Gplus

Privacy budget
(b) ego-Facebook

1 06 07 08 09 1

3 9}

g g

3 3

g g8

2 =

06 07 08 09 1 06 0.7 0.8 0.9 1

Privacy budget Privacy budget
(c) Wiki-vote (d) soc-Epinions1

Fig.5 Euclidean distance of node betweenness

The above experimental results show that when
CGM is applied in a social network, the relative error
values for degree distribution, shortest path, clustering
coefficient and betweenness centrality are relatively
contained within a range. The value of Euclidean dis-
tance in calculating edge and node betweenness are
much smaller. Thus, the sanitized graph has structural
consistency with the raw graph. The results of the CGM
show that the average relative error of the shortest path
and clustering coefficient and the maximum difference
of KL-divergence are better than that of the DER meth-
od. However, the accuracy of the query results could
be improved. Future research will be conducted to im-
prove space division and the privacy budget allocation.

4 Conclusions

In this paper a CGM model is designed to apply
differential privacy to a social network data publication

and to ensure the sanitized graph’ s utility. This proce-
dure can be divided into three steps. First, according
to the features of the social network, the original graph
is classified into multiple disconnected subgraphs and
the noisy count of bridges is recorded. Then for each
sub-graph, the dense regions in the corresponding ad-
jacent matrix are explored using a quad-tree in which
nodes consist of the region’ s size and noisy count of
Is. Finally, with the leaf nodes of each quad-tree, the
sanitized adjacent matrixes are reconstructed and com-
bined into the whole sanitized graph using/through the
noisy count of bridges. At the end of this paper, some
experiments and results are analyzed using degree dis-
tribution, shortest path, clustering coefficient and be-
tweenness centrality methods. According to the results ,
the proposed method maintains data utility and has cer-
tain advantages. Further research will be conducted to
improve the accuracy and efficiency of the method.
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