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Abstract

In order to reduce the pressure of parameter selection and avoid trapping into the local opti-
mum, a novel differential evolution ( DE) algorithm without crossover rate is proposed. Through em-
bedding cellular automata into the DE algorithm, those interactions among vectors are restricted
within cellular structure of neighbors while the cell own evolution, which may be used to balance the
tradeoff between exploration and exploitation and then tune the selection pressure. And further
more, the orthogonal crossover without crossover rate is used instead of the binomial crossover,
which can maintain the population diversity and accelerate the convergence rate. Experimental stud-
The results
show that the proposed algorithm has better capability of maintaining the population diversity and fas-

ies are carried out on a suite of 7 bound-constrained numerical benchmark functions.

ter convergence than the classical differential evolution and several classic differential evolution vari-

ants.

Key words: differential evolution ( DE), cellular automata, orthogonal crossover, balancing

tradeoff, selective pressure

0 Introduction

Differential evolution ( DE) algorithmLIJ is a sim-
ple yet powerful evolutionary algorithm ( EA) for global
optimization in the continuous search domain'*?’.
However, the DE algorithm also has premature conver-
gence, search stagnation and may be easily trapped in-
to local optimum.

The spatial evolutionary algorithms have been pro-
liferated over recent years, such as distributed evolu-
tionary algorithms, cellular evolutionary algorithms
(cEAs) , etc. 431 Thereinto cEAs are a sort of spatial
A ratio of
neighbor to population is the only parameters for con-

structure-based EAs of discrete groups.

tradiction evolutionary phenomena between exploration
and exploitation to establish an adaptive dynamic cellu-
lar model and obtain the optimum behavior of efficiency
and accuracy ®'. A hybrid optimization algorithm was
proposed which combined the efforts of local search
(vector learning) and cellular genetic algorithms for
training recurrent neural networks ( RNN’ s)!7'. A
synchronous cellular genetic algorithm was proposed by
bringing in synchronous mechanism to genetic algo-

rithm'®’.

The cellular DE algorithms with linear and
compact neighbor structure were proposed but it did not

consider the evolutionary process of cells®'®'. The

cellular DE algorithm was proposed to resolve dynamic
optimization problems, which partitioned the search
space into cells to find the local optimum yet not the

M i order to simulate the cellular

cell own evolution
evolutional condition more truly, a new cellular DE
(cDE) algorithm of simulating the life phenomenon
through embedding cellular automata ( CA) into the
DE algorithm is proposed.

The rest of this paper is organized as follows. In
Section 1, the classical DE algorithm is introduced.
Section 2 presents the proposed ¢DE with cellular evo-
lutional process. Section 3 briefly illustrates the experi-
mental results and discussions about the proposed cDE

algorithm. Finally, the conclusions are demonstrated.

1 Classical DE

The classical DE algorithm is a population-based
parallel iterative optimization algorithm which includes
the initial stage and iterative evolutionary stage.

At the initial stage, the initial vector population is
chosen randomly and should cover the entire parameter
¥

g ...
i ’

space. An evolutional population is P*(X) =
X5, -, X6, oo, X8,], where X¢ =

i

[xﬁ’...’ X

x%,] denotes the i" vector of the g" generation, NP de-
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notes the population size and D denotes the dimension
[0, 1, g, ] and g, de-
notes the maximum evolution generation. At the itera-

of the vector. And g =

tive evolutionary stage, each vector goes through a suc-
cession of iterative process including mutation, cross-
over and selection. The above iterative evolutionary
stage will be repeated generation after generation until

the termination criterion is satisfied.
2  Cellular differential evolution

2.1 The evolution mechanism of cEAs

CA proposed by von Neumann is a highly parallel
computing model''?’. For vectors in ¢cEAs are spread in
a 2-D toroidal mesh and are only allowed to interact
with their neighbors, the neighbor structure directly af-
fects the algorithm performance, such as avoidance of
local optimum and maintenance of the population diver-
sity. The two classic cellular neighbor structures are
linear (L) and compact ( C) which are shown in

Fig. 1.
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Fig.1 Typical neighborhood structures of CA

The basic model of the evolution rule is as fol-

lows.
if S, =1, thenS,,, = {1’ Sek,
0,5¢kE,
ifS, =0, thenS,, = {1’ SeF,
0,S ¢ F,

N

w

Target vector Mutant vector

i=1 i=1
Ly(2)
2 I:>
3

where S, and S,,, denote the cell status at step ¢ and ¢ +
neighbor needing
" cell; F, is the

neighbor needing resurrection for

1, E, is the number of an “alive”
continuance in its status for an “alive’
number of an “alive”
a “dead” cell.

The cellular survival space density is different for
different evolution rules and affects the mutual restraint
relationship between vectors. The three rules (Rulel ;
E, = {23}, F, = {3}, Rule2; E, = {1,2,3,4},
F, = 1{4,5,6,7}, and Rule3; E, = {2,4,6,8}, F,
= {1,3,5,7!) are utilized for the simulation of sta-
ble, periodic and complex states which shall be caught
in biological reproduction of confusion.

2.2 Orthogonal crossover operator

The aim of the cross operation is to pass the
chunks with excellent properties in the vector to the
vector of the next generation, making them excellent in
parental vectors. However, the classical DE employs
binomial or exponential crossover operator, which obvi-
ously can’t obtain above objective in most cases. It is
advisable to sample a small but representative sample
of all combinations for test'"’.

For the above purpose, L,(n") is employed as the
orthogonal array for m factors and n levels, which has ¢
rows in which every row represents a combination of

[14]

levels ™. In this paper, n = 2 represents that all fac-

tors have two levels: 0 and 1. Based on the level of ev-
ery factor, the value of a trial vector will be selected
from the target vector or its mutant vector in every di-
mension. m = D is the dimension of the evolutional
vector and ¢ is the total number for completion of full
test of D factors. The operation is described as the or-

thogonal crossover, which is shown in Fig. 2.

(000) 011) (101) (110)
Trial vetor

Fig.2 Orthogonal crossover of a 3D vector

In Fig.3 four selected combinations have been
shown as black dots illustrating the orthogonality of a
three-factor orthogonal array.
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Fig.3 Three-factor orthogonal array

2.3 Description of cDE algorithm

In the ¢DE algorithm, one cell value of the cellu-
lar automata represents the status of the evolutional
vector with the same subscript: alive or dead, and only
the “alive” vector can be evoluted. The size of the cel-
lular automata is equal to the evolutional population.
The proposed ¢DE algorithm is described as follows:

Algorithm; The Pseudocode of ¢cDE

Step 1 Randomly initialize the vector value of the population: P¢ =

?v.,jl) }

wherein X7 ; = {8 - x

,a) b and X, = |«

u o

where X, = {x, -
Step 2 Randomly initialize the cellular value of CA; C* =

0, rand < 0.5

where ¢f . = {
s .
1, otherwise

Step 3  Select the orthogonal crossover table LQ(ZD) =[a,

Whereln aq = [aq.l ’.."aq,ll"..’aq,l):l'

g 8 &
XT,I Xl,/ Xl,n,,

g & &
X5 Xi X ;
.G X¢ e XE

np,1 np,i mpanp " npxnp

uniformly distributed in the range [ X,, X, ],

-, 2’} and g = 0.

R4
Ci (/1,]' (’l,n])
4 4
Cia Cij i\np ’
g g &
Cop 1 Cop, j Cop.mp npxnp
T TaT . . : ;
a,, ,a(,] according to the dimension D of the functions,

Step 4 While (the value of ¢ ; corresponding to current target vector X5 is 1,7 e [1,np], j e [1,np])

#

Select three candidate vectors { X% , X%, ﬁzf = Select(Neighbors(X{ ;) ) according to specific CA neighborhood
model.
Execute the mutation operation to obtain the mutant vector: Vi ; = Mutate(X; , X; , X5 ).
Generate () chromosomes [ U] ,--- 703 y oo ,f]Z]T with f]q = Lty s, ],
ad
x50 i « =1 . . N
where u, , = { ) ’ a4 , then get Uf; =  argmin fitness (U,).
v{’;, otherwise 107,00}
. . Ui, if f(U% ) < f(XF,
Select the winner for the next generation vector; Xﬁ +/] = { o S o ) s A " )
’ X? ;, otherwise

|
f

Step 5 Update the cellular value of CA C**' according to specific CA evolutional rule and update g = g + 1.

Step 6

If the termination criteria is satisfied, output the end result, otherwise jump to Step 4.

3 Experimental results and discussions

3.1 Description of benchmark functions
Experiments used to evaluate and compare several
DE variants are conducted on a suite of 7 benchmark

2] Functions

functions with different characteristics
fis />, [y and f5 are shift for solving the problem that

global optimum lies at the center of the search range.

Functions f; and f; are rotated to avoid local optimum ly-
ing along the coordinate axes or suffer from global opti-
mum lying at the center of the search range. Function
/> 1s constructed by utilizing some basic problems to ob-
tain one more challenging problem. For all functions,
both 10-dimensional ( 10D ) and 30-dimensional
(30D) problems are tested. Table 1 outlines the func-
tion name, search range and global optimum of 7
benchmark functions.
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Table 1  Descriptions of 7 benchmark functions
Function name Search range Global optimum
sphere _ func [ -100,100] 0
schwefel _ 102 [ -100,100] 0
ackley _ rot [ -32,32] 0
griewank [ -600,600 ] 0
rastrigin [ -5,5] 0
schwefel _ rot [ -500,500 ] 0
com _funcl [ -5,5] 0

3.2 Parameter setting for comparison

Experiments in this paper are conducted 25 times
independently on 7 benchmark functions to compare
the proposed c¢DE with the classical DE, SDE, jDE,
DE _ Zaharie and SaDE. The control parameters F', CR
and NP of above six DE variants are set as used in
Ref. [2].

For the proposed ¢DE algorithm, the orthogonal
crossover employs the tailor-made array of the first 10-
columns of the orthogonal list L,,(2") when the di-
mension of test problem is 10. In the orthogonal list
L,(2"), 0 or 1 represents one dimension parameter of
a trial vector which is selected from the target vector or
its mutant vector of DE. The total number of experi-
ments is 12. The orthogonal crossover is composed of
three orthogonal lists at D =10 side by side when the

dimension of test problem is 30. The maximum number
of function evaluations (FEs) is set to be 100 000 for
all benchmark functions. For 12 combinations of levels
are used in orthogonal crossover, the FEs of the ¢cDE
algorithm is set to be 100 000/12 for the sake of fair-
ness. The cellular evolution rule in ¢DE in this paper
uses Rule2'™'.

¢DE uses the optimum C9 neighbor model®’.

The neighbor structure of vectors in

3.3 Comparison of the final solutions accuracy

In order to demonstrate the effects of CA on im-
proving the performance of DE, ¢DE is compared with
the classical DE algorithm and four kinds of DE vari-
ants, then the mean values and standard deviations
(Std) of the best values are calculated by the results of
25 independent runs over 7 benchmark functions. Ta-
ble 2 and Table 3 show the result of benchmark func-
tions at D =10 and D =30 respectively, where the best
value for each benchmark function has been shown in
boldface.

From Table 2 and Table 3, it can be seen that the
performance of ¢DE is superior to classical DE and four
kinds of DE variants. The c¢DE algorithm obtains smal-
ler mean values even theoretical optimum of all 7
benchmark functions at D =10 and D =30. Therefore
it can be concluded that the mechanism of CA on im-
proving the DE is significant.

Table 2 The means and standard deviations of 10D funcitons

Functions DE SaDE SDE jDE DE _ Zaharie cDE
Mean 2.80E-17 8.77E-16 4.02E-19 1.69E-13 1.02E-17 0.00E +00
/ Std 9.27E-18 7.48E-16 2.82E-19 8.60E-14 3.64E-18 0.00E +00
Mean 1.96E +00 2.16E-13 2.29E-02 5.11E-04 1.04E +01 7.10E-20
f Std 5.39E-01 1.13E-13 1.38E-02 3.45E-04 8.55E-01 3.34E-21
Mean 1.14E-08 1.42E-08 3.68E-10 4.41E-07 1.40E-06 3.55E-15
5 Std 4.40E-09 4.71E-09 3.66E-11 1.03E-07 8.44E-07 0.00E +00
Mean 1.01E-01 5.08E-02 1. 04E-15 5.35E-03 2.01E-06 0.00E +00
s Std 3.52E-02 1.83E-02 6.16E-16 2.35E-03 3. 66E-06 0.00E +00
Mean 1.34E-01 4.28E-01 0.00E +00 5.83E-05 0.00E +00 0.00E +00
/s Std 1.45E-01 3.09E-01 0.00E +00 6.26E-05 0.00E +00 0.00E +00
Mean 7.40E +02  4.44E +02 9.45E-09 2.74E-08 8.40E +02 2.10E-11
4 Std 3.18E+02 3.08E +02 1.31E-08 2.13E-08 1.95E +02 5.26E-10
. Mean 2.17E-13 3.39E-16 2.75E-10 1.58E-12 6.61E-02 0.00E +00
S Std 4.84E-13 1.85E-16 6.15E-10 2.13E-12 9.65E-02 0.00E +00
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Table 3 The means and standard deviations of 30D functions

Functions DE SaDE SDE jDE DE _ Zaharie cDE
Mean 6.81E-04 6.37E-09 9.15E-11 2.51E-05 2.23E-05 1.12E-13
S Std 1.30E-04 2.04E-09 4.80E-11 6.56E-06 3.31E-06 9.24E-14
Mean 1.84E+04 3.57E+00 1.52E+04 1.81E+03 1.88E +04 5.90E-02
£ Std 3.51E+03 2.44E+00 3.34E+03 1.40E +03 4.89E +03 7.52E-01
Mean 3.69E-02 7.29E-06 4.30E-06 3.71E-03 5.80E-03 1.07E-14
s Std 1.37E-02 1. 65E-06 5.37E-07 4.80E-04 9.03E-04 3.36E-10
Mean 8.54E-02 8.93E-08 1.05E-09 2.35E-04 6.44E-03 0.00E +00
2 Std 8.65E-02 7.58E-08 1.91E-10 5.71E-05 3.12E-03 0.00E +00
Mean 1.14E+02 4.38E +01 1.22E-11 1.99E +01 1.05E +00 0.00E +00
5 Std 7.59E +00 4.60E +00  4.45E-01 3.56E +00 1.58E +00 0.00E +00
Mean 8.53E+03 7.07E+03 6.56E+03 5.40E +03 7.59E +03 3.45E +03
f Std 2.04E+02 1.30E+02 9.66E +02 1.42E+03 2.30E +02 8.88E +02
Mean 7.77E-05 9.51E-10 5.14E-11 6.63E-06 2.89E-04 8.77E-16
5 Std 2.45E-05 5.01E-10 2.05E-11 1.96E-06 2.16E-04 7.34E-16

Fig. 4 and Fig. 5 illustrate the convergence per- seen from Fig. 4 and Fig. 5 that cDE gets little different

formance in terms of the median run of the best fitness adaptation values from the classical DE and four DE
value of the cDE,, the classical DE, and four DE vari- variants at the initial stage. Furthermore, the conver-
ants on 10D and 30D problems, respectively. It can be gence performances between ¢DE and some other DE
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Fig.4 The convergence performances of ¢cDE in comparison with DE variants on 10D functions
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Fig.5 The convergence performances of ¢cDE in comparison with DE variants on 30D functions

variants in Fig. 4 show that the ¢DE always converges
faster than others and has access to the optimum more
easily than others on most of all 10D functions. Multi-
ple benchmark functions for ¢cDE algorithm have been
converged end before 100,000 FEs. What’ s more, for
the 30D functions, it is greatly difficult to find the
global optimum for all DE variants. The ¢DE algorithm
performs better on most problems in Fig. 5.

3.4 Wilcoxon matched-pairs signed-ranks test

In order to further illustrate the above conclu-
sions, the Wilcoxon matched-pairs signed-ranks test is
employed to compare ¢cDE with the classical DE and
four kinds of DE variants respectively. Table 4 is the
Wilcoxon p-values of the mean data in Table 2 and Ta-
ble 3.

As can be seen from Table 4, ¢DE outperforms
the classical DE and four kinds of DE variants with the
significance level o = 0.05 considering independent
matched-pairs comparisons at D =10 and D =30.

Table 4  p-values of Wilcoxon matched-pairs signed-ranks test

cDE vs. D=10 D =30
DE 1.8E-2 1.8E-2
SaDE 1.8E-2 1.8E-2
SDE 2.7E-2 1.8E-2
jDE 1.8E-2 1.8E-2
DE _ Zaharie 2.8E-2 1.8E-2

3.5 Convergence analysis

To illustrate the effect of orthogonal crossover op-
erator, the BicDE algorithm has been designed. The
only difference between the BicDE algorithm and ¢DE
algorithm is that BicDE algorithm uses the binomial
crossover while ¢DE algorithm uses the orthogonal
CTOSSOVer.

Fig. 6 illustrates the convergence characteristics
comparison in term of the best fitness value between
¢DE and BicDE on functions f; ~ f;atD =10and D =
30. From Fig. 6, it can be seen that the convergence

rate of cDE is faster than BicDE for all 7 benchmark



432

HIGH TECHNOLOGY LETTERSIVol.23 No.4|Dec. 2017

functions. Accordingly, the c¢DE algorithm requires
smaller FEs than the BicDE algorithm and therefore it

has smaller time complexity.
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Fig.6 The convergence characteristics of ¢cDE vs BicDE for 7 benchmark functions

The above results confirm two conclusions. The
first one is that ¢DE algorithm can tune the selection
pressure by using local search within cellular neighbor
structure instead of using its controlling parameters in
the classical DE and plenty of cellular evolution rules
ensure maintaining the diversity of evolutional popula-
tion which can avoid falling into local optimum, so the
probability of searching the global optimum will in-
crease. The second one is that the orthogonal crossover
operator provides repeated trials of multi-element for
the ¢DE algorithm more easily to find the global opti-
mum than those DE variants with binomial crossover
and thus helps to accelerate the convergence speed.

4 Conclusions

A novel ¢DE algorithm without crossover rate is

presented, in which those evolutional interactions
among vectors are restricted within cellular neighbors
while the cell is dynamic evolutionary. The parallel
evolution mechanism and cellular neighbor stucture are
applied to balance exploration and exploitation tradeoff
of DE. The binomial crossover operator is replaced by
the orthogonal crossover, which may maintain the pop-
ulation diversity and enhance convergence speed.
Through comparing the convergence performance of
cDE with the classical DE and four DE variants over a
suit of 7 benchmark functions, the simulation results
show that the c¢DE algorithm has better capability of
maintaining the population diversity, which can avoid
being trapped into the local optimum effectively and

has faster convergence speed.
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