HIGH TECHNOLOGY LETTERSIVol. 23 No.4|Dec. 2017 | pp. 384 ~389

doi:10.3772/j. issn. 1006-6748.2017. 04. 006

A novel conditional diagnosability algorithm under the PMC model”

Guo Chen (5 J2) ", Liang Jiarong®™ | Leng Ming ™ , Peng Shuo”
( " School of Electronic and Information Engineering, Jinggangshan University, Ji’ an 343009, P. R. China)

( ™ School of Computer and Electronic Information, Guangxi University, Nanning 530004, P. R. China)

( ™ Department of Computer Science and Technology, Tsinghua University, Beijing 100084, P. R. China)

Abstract
Conditionally t-diagnosable and t-diagnosable are important in system level diagnosis. There-

fore, it is valuable to identify whether the system is conditionally t-diagnosable or t-diagnosable and

derive the corresponding conditional diagnosability and diagnosability. In the paper, distinguishable

measures of pairs of distinct faulty sets with a new perspective on establishing functions are focused.

Applying distinguishable function and decision function, it is determined whether a system is condi-

tionally t-diagnosable (or t-diagnosable) or not under the PMC ( Preparata, Metze, and Chien)

model directly. Based on the decision function, a novel conditional diagnosability algorithm under

the PMC model is introduced which can calculate conditional diagnosability rapidly.
Key words: the PMC ( Preparata, Metze, and Chien) model, conditionally t-diagnosable,
conditional diagnosability, conditional diagnosability algorithm

0 Introduction

With the continuous development of large-scale
integration, multiprocessor computer systems can con-
sist of hundreds of processors. However, the high com-
plexity of those systems may threaten their reliability.
To resolve this issue, in 1967, Preparata, Metze, and
Chien presented the definition of system level diagnosis
and proposed a so-called PMC model and t-diagnos-
able'"’. In 1992, Sengupta and Dahbura proposed that
the most important necessary and sufficient condition
for t-diagnosable was that each pair of distinct faulty
sets should be distinguishable, provided the number of

faulty vertices was no more than ¢'*'.

Lai
ability based on the assumption that all neighbors of

, et al. " introduced the conditional diagnos-
any processor in a multiprocessor system could not be
fault simultaneously. A system is conditionally t-diag-
nosable if each pair of conditional faulty sets is distin-
guishable. Thus far, distinguishability of a pair of dis-
tinct faulty sets is widely adopted in the study of t-diag-

2,4,5] ]

nosable' , conditionally t-diagnosable**’ | strong

diagnosability”>®’  and  g-good-neighbor conditional

t-diagnosable ")

However, lacking of distinguishable
measures has caused bad influence.

In this paper, distinguishable measures of pairs of
distinct faulty sets with a new perspective on establis-

hing functions is focused. After a distinguishable func-

tion and a decision function are constructed, how to
identify whether a system is conditionally t-diagnosable
(t-diagnosable ) or not under the PMC model is studied.
Finally, a novel algorithm is given to derive conditional
diagnosability under the PMC model.

1 Preliminaries

A multiprocessor computer system consisting of n
processors is modeled as a graph where each vertex re-
presents a processor and each edge represents a link.
Let G(V, E) be such a graph. An edge (u, v) e
E(G), withu, v € V(G), is a test edge of G(V, E) ,
which represents a test performed by u on v. The out-
come of edge (u, v), denoted by o(u, v),is “0” ifu
evaluates v as a pass and “1” if u evaluates v as a fault.
An outcome is reliable only if the tester is fault-free.
The collection of all test outcomes in G(V, E) is called
a syndrome, denoted by g. Each vertex has two states;
fault-free and faulty. If vertex u is identified as fault-
free, then denoted by u = 0; otherwise u = 1.

In the PMC model, each vertex u is able to test
another vertex if there is a link between them. The out-
come of a test performed by a fault-free tester is 1 (re-
spectively, 0) if the tested vertex is faulty (respective-
ly, fault-free ), whereas the outcome of a test per-
formed by a faulty tester is unreliable. Table 1 summa-
rizes the invalidation rules for the PMC model.
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Table 1 Invalidation rules for the PMC model
u v o(u, v)
0 0 0
0 1 1
1 0 Oorl
1 1 0orl

Some known results about faulty set and t-diagnos-
able are listed below.

Definition 1'*'; A subset F C V(G) is called a
faulty set of a given syndrome o, for any (u,v) € E(G)
andu € V(G) - F, o(u,w) =0ifv e V(G) - F,
o(u,w) =1ifv e F.

For a given syndrome ¢, a faulty set F C V(G) is
said to be consistent with ¢ if F can produce . Let
o (F) represent the set of syndromes which can be pro-
duced if F is the set of faulty vertices.

Definition 2'''; A system is a t-diagnosable one
if and only if, for a given syndrome ¢, all the faulty
vertices can be identified that the number of faulty ver-
tices are not more than ¢.

Definition 3> ; Two distinct faulty sets F, and F,
are said to be indistinguishable if ¢(F,) N o(F,) #
@; otherwise, (F,, F,) is distinguishable.

According to Definition 2 and 3, the following two
lemmas about t-diagnosable are proposed.

Lemma 1'*'; For a pair of distinct faulty sets F,
and F,, with ¥, CV(G) and F, CV(G), (F,, F,) is
distinguishable if there exists at least one test from
V(G) — (F, UF,) to F,AF,. Operator A implies ex-
clusive-or (XOR). Hence, F\AF, = (F, - F,) U
(F, = F,). The operator | | implies cardinality. Then,
| F, | is the cardinality of F,.

Lemma 2" ; A system is t-diagnosable if each
pair of distinct faulty sets F, and F, is distinguishable,
provided that | F, | < tand| F, | < 1.

Diagnosability is an important measure of self-di-
agnostic capability. The diagnosability of system G is
the maximum value of ¢ such that G is t-diagnosable
written as £( G).

Motivated by the deficiency of classical measure-
ment of diagnosability, Lai, et al. presented condition-
al diagnosability by claiming the property that each ver-
tex had at least one fault-free neighbor*’. Then, they
introduced some useful definitions and lemmas as fol-
lows.

Definition 4’ ; Faulty set ¥ C V(G) is a condi-
tional faulty set only if every vertex of the system has at
least one fault-free neighbor.

Lemma 37’ . A system is conditionally t-diagnos-
able if each pair of distinct conditional faulty sets (F,,
F,) is distinguishable, with| F| | <¢and| F, | <.

Definition 5" : The conditional diagnosability of
system G is the maximum value of ¢ that G is condition-
ally t-diagnosable, denoted ast, (G).

In this paper, an undirected diagnosable system is
adopted, which assumes that every test edge is bidirec-
tional. The undirected diagnosable system is a special
diagnosable system. An arbitrary edge (u,v) of an un-
directed diagnosable system implies that u can test v and
v can test u too.

2 Distinguishable measure of pairs of dis-
tinct faulty sets

As mentioned above, t-diagnosable and condition-
ally t-diagnosable are closely related to the distinguish-
ability of pairs of distinct faulty sets. Therefore, an in-
teresting question arises here; how to identify whether
two distinct faulty sets are distinguishable or not. In
this section, some important theorems and lemmas
about distinguishable measures of two distinct faulty
sets will be presented.

Theorem 1: Let F| and F, be two distinct faulty
sets of an undirected diagnosable system, (F,, F,) is
distinguishable, then there exists at least one undirect-
ed edge (u, v),such (u+v) 1, +(u+v)l, =1
(u +v) | is the sum of u and v when F is the set of
faulty vertices, (u +v) 1, = (u) I, + () ., (u) |,
=0ifu ¢ F
to the definition of (u +v) |, , (u +2v) 1, =1 (or

.yand (u) |, =1ifu e F,. According
(u+wv) |y =1) implies thatu +v = 1, which means
one of {u,v} is fault-free and the other is faulty, when
F, (or F, ) is the current faulty vertices set.

Proof: This theorem is proved by contradiction.
For each undirected edge (u,v) of the system, it is as-
sumed (u +v) |5 + (u+wv) | r, 7 1. Without loss of
generality, there exists 7 cases. As shown in Table 2,
only case 2 lacks the possibility of satisfying o(u,v)
lp = o(u,w) Iy and o(v,u) 1, = o(v,u) |,
which means o (F,) N o(F,) =0O.

According to (u + v) |, + (u +0) |, # 1,
case 2 will not appear in the system. Therefore, the
system has the possibility of satisfying o(u,v) I =
o(u,v) lpando(v,u)l, =o(v,u)l,,, which im-
plies o (F,) No(F,) #O. According to Definition 3,
(F,, F,) is an indistinguishable pair of faulty sets,
which contradicts the assumption. The theorem follows.

It is easy to prove that (u +v) |, + (u+v) |5
= 1 is another form of the existence of at least one test
edge from V = (F, U F,) to (F,AF,). Therefore,

Theorem 1 is also proved by Lemma 1.
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Table 2 The value of (u + ) | ; + (u +v) | ;, under

all possible scenarios

Faulty set  (w) 1, (o) 1, o(u,0) s o(v,u)ly
x =0 0 0 0 0
x =1 0 0 0 0
(w+w)lpy +(u+w)ly =0
Case 1
Faulty set.  (w) g, (0) 15, o(u,w) Iy o(v,u) |y
x =0 0 0 0 0
x =1 1 0 x 1
(w+w) Iy +(utw)l, =1
Case 2
Faulty set  (u) I, (0) 1, o(uw)l,  o(vu)l,
x =0 0 0 0 0
x =1 1 1 x x
(wtw) Iy +(utw)l, =2
Case 3
Faulty set  (w) 1, (o) 1, o(u,w)l;  o(v,u)l,
x =0 1 0 x 1
x =1 1 0 x 1
(wtw) lp +(utw)l, =2
Case 4
Faulty set  (u) g, (0) 15, o(u,0) Iy o(v,u) |y
x =0 1 0 x 1
x =1 0 1 1 x
(w+w) lpy +(uwtw)l, =2
Case 5
Fauly st (@) 15, () 1, o(a0) 1, (o0 I,
x =0 1 0 x 1
x =1 1 1 x x
(w+w) lpy +(u+w)l, =3
Case 6
Faulty set  (u) I, (o) 1, o(u,0)l, o(v,u)l,
x =0 1 1 x x
x =1 1 1 x x
(w+w)lpy +(u+w)l, =4
Case 7

According to Theorem 1, an important distin-
guishable function is presented which can identify
whether a pair of faulty sets is distinguishable or not.

Definition 6; For any two distinct subsets F, and
F,,  distinguishable D(F, ,F,) =

((w+v) Iy +(u+ov)l, 1)
each(u,v) e E(G)

According to Definition 6, D(F,, F;) = D(F,,
F.) is got. To avoid double-counting, i < jis set.

Lemma 4. D(F,,F,) =0 represents that (F,,
F,) is distinguishable; otherwise, (F,, F,) is indis-
tinguishable.

function

Proof: Obviously, according to Theorem 1, (F,,
F,) is distinguishable which can be expressed as there
exists at least one undirected edge (u,v), such (u +
v) Iy + (u+w) !l =1 Therefore, (u+v) 1, + (u
+w) |, =1 =0 can be deduced. That is to say, (F,,
F,) is distinguishable and can be expressed as

((w+o)lp +(u+v) !,y =1) =0, (u,v)
each (u,v) e £

e E. Hence, Lemma 4 holds.

According to Lemma 2 and Lemma 3, t-diagnos-
able and conditionally t-diagnosable are tied to distin-
guishability of pairs of distinct faulty sets and condi-
tional faulty sets, respectively.

Next, a decision function will be provided which
can decide whether the system is t-diagnosable ( or
conditionally t-diagnosable) .

Definition 7; Decision function J(F, F,, -+ F )

m
I<i<jsm

= 2 | D(Fi,Fj) |, where F, , F, ,---, F are all
i=1;=2

the posjsible faulty sets (or conditional faulty sets) with

[ I B O e BV AN A

Lemma 5. J(F,,F,,--,F, ) =0 represents the
fact that the system is t-diagnosable (or conditionally
t-diagnosable) , where F, ,F,,--- F, are all the possi-
ble faulty sets (or conditional faulty sets) with | F, | ,
| Fy | -, | F_ | < t; otherwise, the system is not t-
diagnosable (or conditionally t-diagnosable) .

Proof. By Definition 7, J(F,,F,,---,F,) =0
means D(F;, F;) =0forl <i <j<m. According to
Lemma 4, D(F;, F;) = 0 represents the fact that (F;,
F,) is distinguishable. By Lemma 2, the system is t-
diagnosable. Hence, the lemma holds.

The decision function J(F,,F,,---,F, ) can be
used in both t-diagnosable systems and conditionally
t-diagnosable systems. The only difference is whether
F,,F,,- F  are all the possible faulty sets or all the

possible conditional faulty sets.

3 A novel conditional diagnosability algo-
rithm under the PMC model

The conditional diagnosability algorithm under the
proposed PMC model is based on Theorem 1 and deci-
sion function J(F, ,F,,---,F ). The effectiveness of
this conditional diagnosability algorithm has been con-
firmed by Lemma 5. Above all, all the possible condi-
tional faulty sets of the system must be derived. Then,
the decision function J(F,,F,,---,F, ) is called to i-
dentify whether the system is conditionally t-diagnos-
able or not and then obtain conditional diagnosability.
The new algorithm can be outlined as follows
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Step 1: Construct conditional faulty set equa-
tions.

For each vertexu e V, we set ['(u) = {u' e VI
(u,u’") e E{. According to the definition of condition-
al diagnosability, I'(u) has at least one fault-free
neighbor that can be denoted by I'(u) = wu,-+-u, =
0. The equations of all the vertices in the system com-
pose the conditional faulty set equations.

Step 1 can be described by the following pseud-
ocode.

Input: G(V, E)
Output; The conditional faulty set equations

for every vertex u € V(G)
Compute I'(u) = {u,,u,,",u,}

1
2 2 g

3 To build equation Hj:]ui =0

4 end for

5 Collects all equations to form conditional faulty set equa-
tions

6 return to Step 2

Step 2; Convert each equation of the conditional
faulty set equations into a relational table.

For example, the equation x,x,---x, = 0 means

that there exists at least one vertex “0”. The relational
= 0 is Table 3, which

table corresponding to x,x,--x,

consists of 27 — 1 tuples.

Table 3 The relational table corresponds to x,x,-x, = 0
% %, x,
0 0 0
0 0
1 1 0

Step 2 can be described as follows

Input. Conditional fault model equations
Output: Relational tables X, , X,,---, X

’ m

1 for every equation of equations

2 Transform equation into a relation table X,
3 i=i+1

4 end for

5 return to Step 3

Step 3. Derive all the possible conditional faulty
sets.

After all the conditional faulty set equations have
been converted into relational tables, all the possible
conditional faulty sets in this step will be derived. Let
all of the relational tables be X, , X,,---, X..

First of all, empty relational table X is defined. If
relational tables X and X, have one or more fields in

common, then the two tables are joined as a new rela-
tional table X by natural join (><{), denoted by X = X
><X,, otherwise, they are joined by Cartesian prod-
uct ( x ), denoted by X = X x X,. Repeat this step
from X, to X,. The final new relational table X is the set
of all the possible conditional faulty sets, denoted by X
= |F,, Fy,,F1.

The pseudocode of this step is described as fol-
lows

X

sy

Input. Relational tables X, ,X, ,---
Output: All the possible conditional faulty sets X

1 forifrom1 tor

2 IF there exists common fields between X and X;
3 Then X = X DX,
4 Else X = X x X,
5 end if

6 end for

7

return to Step 4

Step 4. Calculate the sum of the two adjacent ver-
tices of each undirected test edge under different condi-
tional faulty sets and D(F,,F;).

The pseudocode of this step is given below.

Input. All the possible conditional faulty sets X

Output: The sum of the two adjacent vertices of each undi-
rected test edge under different conditional faulty sets and
D(F,F),1<i<j<sm

1 for each edge (u,v) e E(G)

2 for each conditional fault set F,

3 Calculate (u +v) |,

4 end for

5 end for

6  forifrom 1 tom (m represents the total number of condi-
tional faulty sets)

7 forjfromi + 1 tom

8 Calculate D(F;, F))

9 end for

10 end for

11  return to Step 5

Step 5. Call the decision function J(F,, F,,---,
F,) to determine whether the system is conditionally
t-diagnosable or not and derive ¢, (G).

Let all those conditional faulty sets which have
less than i faulty vertices be F,, F,, -, F. J(F,,
F,,-+, F,) = 0 represents the system is conditionally
t-diagnosable, with ¢ = i. ,(G) is the maximum value
of 1.

Step 5 can be described by the following pseud-
ocode.
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Input: D(F,, F;)),1<i<j<sm

Output: ;, (G)

1 forifrom 1 to the max number of faulty vertices of all the
faulty sets in X

2 Calculate J(F,, F,,--, F,), where F\, F,,--- F, are

st p

all the conditional faulty sets which have less than ¢ faulty
vertices.

3 it J(F,, Fy,--+, F,) =0

4 then the system is conditionally t-diagnosable,
witht =4

5 else the system is not conditionally t-diagnosable

6 end if

7 end for

8 1,(G) = the maximum value of ¢ such the system is con-

ditionally t-diagnosable

[lustrated by the example of Fig.1, conditional
faulty set equations can be constructed as Eq. (1) then
to obtain all the relational tables as shown in Table 4.
Finally, the new relational table X can be got by X =
X, x X, DX, <X, ><UX;. The result of X is shown
in Table 5.

As shown, there are 11 conditional faulty sets,
where F| has no faulty vertex, each conditional faulty
set of {F,, Fy,---, F¢| has only one faulty vertex,
, Fy }

has two faulty vertices. The maximum number of faulty

and each conditional faulty set of {F,, Fg,--

vertices of all the possible conditional faulty sets is 2.
That is to say, t,(G) < 2. The sums of the two adja-
cent vertices of each undirected test edge under differ-
ent conditional faulty sets are shown in Table 6. And
D(F;, F;) =0forl <i <j=<11 as shown in Table 7.
All the possible conditional faulty sets in which the
number of faulty vertices does not exceed 1 are F',, F,,
o, Foo J(F,, Fy -
conditionally t-diagnosable, with ¢ = 1. Next, all the

, F¢) = 0 means the system is

possible conditional faulty sets in which the number of
faulty vertices does not exceed 2 are F,, F,, .-+ | F,,.
also J(F,, F,,-+, F|;) = 0 implies that the system is
conditionally t-diagnosable, withz = 2. Byt (G) <2,
t,(G) = 2is got.

Fig.1 A system consisting of 5 vertices

ac =0
bd =0
ce =0 (1)
ad =0
be =0
Table 4  Relational tables corresponding to Eq. (1)
Equation Relational Relational table
table name
a c
0 0
ac =0 X,
1 0
0 1
b d
0 0
bd =0 X,
1 0
0 1
C e
0 0
ce =0 X,
1 0
0 1
a d
0 0
ad =0 X,
1 0
0
b e
0 0
be =0 X
1 0
0 1

4 Conclusion

Conditional diagnosability is a new measure of di-
agnosability which claims that each vertex has at least
one fault free neighbor. Therefore, all the fault proces-
sors can be identified if the number of fault processors
in a system is less than the conditional diagnosability
and any faulty set cannot contain all neighbors of any
processor . As a result a conditional diagnosability al-
gorithm is more important, which can determine condi-
tional diagnosability of any system. With the continu-
ous development of large-scale integration, multipro-
cessor systems may have hundreds of processors, espe-
cially in supercomputer systems, high-performance
parallel computing systems and grid systems, which are
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Table 5  All the conditional faulty sets in X

Table 6 The sums of the two incident vertices

No. a b ¢ d e No. (a+b0) 1, (b+c)lp(c+d)l (d+e)l;(e+a)l,
F, 0 0 0 0 0 F, 0 0 0 0 0
F, 0 0 0 0 1 F, 0 0 0 1 1
F, 0 0 0 1 0 F, 0 0 | 1 0
F, 1 0 0 0 0 F, 1 0 0 0 1
Fy 0 1 0 0 0 F, 1 1 0 0 0
F 0 0 1 0 0 F 0 1 1 0 0
F, 0 0 1 1 0 F, 0 | 2 1 0
Fy 0 1 1 0 0 Fy 1 2 1 0 0
F, 0 0 0 1 1 F, 0 0 1 2 1
Flo 1 0 0 0 1 Fy 1 0 0 1 2
Fy 1 1 0 0 0 F, 2 1 0 0 1
Table 7 The results of D(F,, F;), forl <i <j=<11

D(F,F,) =0 [ D(F,,F,) =0 [ D(F,,F,) =0 [ D(F,Fy) =0[D(Fy,F,) =0 D(F,F,) =0 [D(F,,Fy) =0 [ D(F,,F,) =0 [D(F,,F,) =0[D(F,,F,) =0]

D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F;) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(Fy,F,,) =0|D(F,,F,) =0

D(F,,F,) =0 | D(F,,F;) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,F,) =0 | D(F,,F,) =0 |D(F,.F,) =0|D(F,,F,) =0

D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 |D(F,,F,) =0|D(F,.F,) =0

D(F,,Fy) =0 | D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 |D(F,,F,)) =0 |D(F,,F,,) =0

D(F,,F,) =0 | D(F,,F,) =0 | D(F,,F,) =0 |D(F,,F,)) =0|D(F,F,)) =0

D(F,,Fy) =0 | D(F,,F,) =0 | D(F,,F,) =0|D(F, F,) =0

D(F,,F,) =0 |D(F,,F,) =0|D(F,,F,) =0

D(F,,F,) =0|D(F,,F,) =0

D(F,,F,) =0

usually based on an underlying bus structure, or a kind
of interconnection networks. However, the high com-
plexity of these systems may threaten their reliability.
Hence, an efficient conditional diagnosability algorithm
has important theoretical significance and application
value, which can be used to evaluate the reliability of
multiprocessor systems.

In this paper, the distinguishable measure of pairs
of distinct faulty sets have be investigated. By theoreti-
cal deduction, an effective decision function J(F,,F,,

-,F,) and a novel conditional diagnosability algo-
rithm are presented successfully which can identify
whether the system is conditionally t-diagnosable or not
directly and obtain z,( G) conveniently under the PMC

model.
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