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Abstract
The performance of conventional similarity measurement methods is affected seriously by the

curse of dimensionality of high-dimensional data. The reason is that data difference between sparse

and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities

between any results. A similarity measurement method of high-dimensional data based on normalized

net lattice subspace is proposed. The data range of each dimension is divided into several intervals,

and the components in different dimensions are mapped onto the corresponding interval. Only the

component in the same or adjacent interval is used to calculate the similarity. To validate this meth-

od, three data types are used, and seven common similarity measurement methods are compared.

The experimental result indicates that the relative difference of the method is increasing with the di-

mensionality and is approximately two or three orders of magnitude higher than the conventional

method. In addition, the similarity range of this method in different dimensions is [0, 1], which is

fit for similarity analysis after dimensionality reduction.

Key words: high-dimensional data, the curse of dimensionality, similarity, normalization,

subspace, NPsim

0 Introduction

A similarity measurement can determine similarity
degree between two data, or distance between two
points, which is the basis of data-mining methods such
as clustering, classification, nearest neighbor search,
and association analysis. Conventional similarity meas-
urement methods include Euclidean distance, Jaccard

') and Pearson coefficient'”). These meth-

coefficient
ods can satisfy the similarity measurement requirement
in low-dimensional space (less than 16) “1 However,
with the increasing spatial dimensionalities, the dis-
tance between a query point and its nearest neighbor
point tends to be equal to the distance from the query
point to its farthest neighbor point. When the distance
between any two points is equal everywhere, the simi-
larity is pointless; this is called the isometrics in high-

dimensional space'*’

. The root cause of this phenome-
non is the curse of dimensionality that is derived from

properties of sparsity and empty space in a high-dimen-

sional space. Thus, the performances of many similari-
ty measurements are positively affected in the low-di-
mensional space, yet decrease sharply in the high-di-
mensional space.

In recent years, a series of methods have been
proposed for similarity measurement of high-dimension-
al data; these include Hsim(X,Y)"', HDsim(X,
V) Gsim(X,Y), Close(X,Y)"™ | and Esim(X,
Y)""). However, these methods ignore the relative
difference in property, noise distribution, weight, and
are only valid for certain data types''"’. The Psim(X,
Y) function considers the above-mentioned factors''"’
and is applicable to a variety of data types; however, it
is unable to compare similarity under different dimen-
sions because its range depends on the spatial dimen-
sionality.

To solve this problem, a similarity measurement
method of high-dimensional data based on normalized
net lattice subspace is proposed. The similarity range

is no longer limited by the spatial dimensionality.
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1 Related work

1.1 Curse of dimensionality

This is a ubiquitous phenomenon in the applica-
tion field of high-dimensional data, and occurs because
of the sparsity and empty space in high-dimensional
space.

1.1.1

There is a d-dimensional data set D in a hypercube
unit ¥ = [0,1]%, and data elements are distributed
uniformly. The probability of a point falling into one

Sparsity

hypercube with length s is s, which decreases with the
increase of s because s < 1. That is, it is very likely

that there is no point in a large range'"'. For exam-
ple, approximately only 0.59% data exists in a hyper-

cube with length 0.95 when dimension s =100.

1.1.2  Empty space phenomenon

A normal distribution dataset can be expressed by
its center point and standard deviation. The distances
between the data points and the center point obey the
Gauss distribution; however, their relative orientation
can be selected randomly. In addition, the number of
possible directions relative to a center point is in-
creased exponentially and the distance between them is
increased with the increase of dimensionality. From the
viewpoint of the density of a dataset, a maximum value
exists at the center point, although there may not be a
point close to the center point. This phenomenon of a
high-dimensional space is called “empty space. ”

1.1.3

The volume of unit sphere in a d-dimensional

[sometry

space is described as follows.
4

V(d) = —"— (1)
27(5)

V(d) decreases gradually with the increase of dimen-

sionality d. Fig. 1 shows that V(d) —0ifd > 16.

Volume of unit sphere
O, WALO

Dimension

Fig.1 Variation trend of unit sphere volume with

increasing dimensions

With the increase in dimensionality, the number
of corners increases and the volume of unit sphere
gradually decreases because the volume of the unit hy-
perspace does not change. Thus, most of the data will
be distributed in the hyperspace corner. This phenome-
non is shown in Fig. 2 from left to right; the three sub-
graphs show the distributions of super-space data with
dimensionality of 2, 3, and 8, respectively. In eight-
dimensional space, 98% data is distributed in 278 =
256 corners. Moreover, the maximum and minimum
Euclidean distances between the data and center point
are both the same. When the dimensionality tends to
infinity, the difference between the maximum and min-
imum Euclidean distance of the sample points to the
center point tends toward 0.

Fig.2 Data distribution in different dimensions

Therefore, with the increase in dimensionality,
the Euclidean distance between any data tends to re-
main the same, and no longer has the measurement
function. The corresponding data-mining methods,
such as clustering, classification, and nearest neigh-

bor, would lose their effect.

1.2 Conventional high-dimensional data similari-
ty measurement methods

In recent years, a similarity measurement problem
in high-dimensional space has been studied to a certain
extent but the research is insufficient. The Hsim(X,Y)
function was proposed by Yang'®’ | which is better than
the conventional method but neglects the relative differ-
ence and noise distribution. In addition, it is not suit-
able for measuring the similarity of categorical-attribute
data. Next, the Gsim(X,Y) function'” was proposed
according to the relative difference of properties in dif-
ferent dimensions; however, it ignores the weight dis-
crepancy. Zhao introduced the piecewise function §( X,
Y) into Hsim(X,Y) and proposed the Hsimc(X,Y)

function''’

, which comprises a function of measuring
categorical-attribute data. However, similarity between
a pair of points whose components are complementary
in every dimension is inconsistent with the actual re-
sult. The piecewise function §(X,Y) of function Xie
modified Hsime(X,Y) and proposed the HDsim(X,Y)

[6]

function™”” , which can solve the problem derived from
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a complementary property in every dimension. Howev-
er, the attribute difference and noise distribution prob-
lem are neglected. The Close(X,Y) function'®’ based
on the monotonous decrease of e ™ can overcome the in-
fluence from components in some dimensions with large
variance but does not consider the relative difference,
which would be affected by noise. The Esim(X,Y) [9]
function was proposed by improving Hsim(X,Y) and
Close(X,Y) functions and combining the influence of
property on similarity. In every dimension, the
Esim(X,Y) component shows a positive correlation to
the value in this dimension. All dimensions are divided
into two parts; normal and noisy dimensions. In a nois-
y dimension, the noise occupies majority. When noise
is similar or larger than the one in a normal dimension,
this method is invalid. The secondary measurement
method'"?’ is used to calculate the similarity by virtue
of property distribution, space distance, etc. ; howev-
er, it neglects the noise distribution and weight. In ad-
dition, it is time-consuming. The concept of nearest
neighbor projection was proposed by Hinneburg' "',
which was combined with dimensionality reduction to
solve the problem in high-dimensional space. Howev-
er, this method complicates the determination of a suit-
able quality criterion function. Thus, an extension the-
ory was introduced into similarity calculation'” | in
which, the high-dimensional data is expressed as an
ordered three tuple by virtue of matter element, and
the deviation ( the interval length of attribute value in
every dimension) is added into function A. However,
this method is too complicated, and the result valida-
tion of the high-dimensional data was not described in
the corresponding paper. Yi''"' determined that in a
high-dimensional space, the difference in a noisy di-
mension is larger than in a sparse dimension, no matter
how similar the data is. This difference occupies a
large amount of the similarity calculation, leading to
the calculation results of any objects being similar.
Therefore , the Psim(X,Y) function''” was proposed to
eliminate the noisy influence by analyzing the differ-
ence among all dimensions. The experimental results
indicate that this method is suitable for a variety of da-
ta. However, its range is [0,n ], where n is the dimen-
sionality. Thus, the similarities in different dimensions
cannot be compared.

2 Similarity measurement method based on
normalized net lattice subspace

2.1 Sparse and noisy dimensions
With increasing dimensionality, the similarities
based on the L, norm between any data become the

same. The root cause is that the L, norm depends on
the dimension too much which has largely different
components. In other words, when calculating similari-
ty between X and Y, the larger the value of X; — Y, on
the i-th dimension, the greater the contribution of the
i-th dimension to X and Y. Although both X and Y are
very similar in other dimensions except the i-th dimen-
sion, the overall similarity of X and Y is very small.
This i-th dimension is called sparse or noisy dimen-
sion.

Owing to the existence of sparsity and noise in the
high-dimensional space, no matter how similar the two
records are there will always be a different dimension.
The difference in these dimensions occupies a large
proportion of the whole similarity, leading to any re-
cord in the high-dimensional space being dissimi-
lar''®).

To solve this problem, the data range in every di-
mension can be divided into several intervals, and the
components can be mapped onto corresponding inter-
vals. When calculating the similarity between two
points, only the dimensions that fall into the same in-
terval are used. The other dimensions are regarded as
sparse or noisy dimensions, and are not included in the
calculation.

2.2 Meshing of high-dimensional data space

Let the dimension of dataset be d , and the num-
ber of data object be M. Then, every data object is ex-
pressed asx, (1 < k£ < M). In addition, every dimen-
sion is divided inton = [ 6d ] continuous intervals, and
0 is the real number between 0 and 1. Thus, the num-
ber of points in every interval is G = [ M/n].

In the i-th dimension, all components are sorted
in an ascending order. The Fk-th sorted value is
Val[k](1 <k <M). R;is the j-th interval in the i-th
dimension, whose lower and upper bounds are Ly, and
Uy, , respectively. It can be seen that L, = Vall (j -
1)G +1] and U"’y = Val[jG].

For any two data objects x, and y, in the d-dimen-
sional space, their components in the i-th dimension
are x, and y}, respectively, and the serial numbers of
the corresponding intervals are y(x;) and y(x;), as
follows.

y(x,) =i, LRL-/-I[ S % S URM (2)

(3)

For x, and y,, the set of dimensions in which com-

7(3’;) =Jj, LR,-J-I = y; = URUI

ponents fall into the same interval is
Sp=dily(x) =y | (4)
If the i-th components of x, and y, fall into the ad-
jacent intervals, and the distance between them is less
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than the average length of the two adjacent intervals,

the two points are regarded as close to each other, and

included in the similarity calculation. The set of these

dimensions is shown as

S, = {il (I y(x) =y(y) 1 =1) Al x, =y
<l Uy, ., _LRfyup | +1 URM,»;) -L | /2) ]

(5)

The set of dimensions included in the similarity

iy(xf Riy(y})

calculation is the union of S, and S, ;

S = S,US, (6)

2.3 Similarity measurement
The Psim(X,Y) function proposed by Yi is suit-
able for a variety of data types''®’; however, its range
is dependent on the spatial dimensionality, and thus
the comparison of similarity in different dimensions is
not possible. Under the circumstance of maintaining
effects, Psim(X,Y) is corrected as
d
NPSim(X,Y) = Z %-S(Xf, Y,)
/( | X, —Y_,.I)'E(X,Y)
LT L)

(7)
where X and Y are any two points in the d-dimensional
space, and X; and Y, are components in the i-th dimen-
sion. Moreover, 6(X;, Y;) is the discriminant func-
tion. If X; and Y, are in the same interval [LR/_, UR/_] ,
8(X;, Y,) =1, otherwise §(X,, ¥;) =0. E(X,Y) re-
presents the number of intervals in which components
of X and Y are all the same. The range of NPsim(X,
Y) is observed to be in [0, 1]. The above is the out-
line of NPsim, and the detailed introduction can be

found in Ref. [10].
3 Experiment

To validate this method, three data types with dif-
ferent distributions were generated through Matlab.
Next, the similarities in different dimensions were cal-
culated using the proposed method, and were compared
with the result obtained from calculating Manhattan dis-
tance, Fuclidean distance, Hsim(X,Y), Gsim(X,
Y), Close(X,Y), Esim(X,Y), and Psim(X,Y).

3.1 Data description

The following three data types were used in the
experiment[ 107

(1) Independent and identically distributed
(IID) ;. Here, all variables obey the same data distri-
bution function but are independent of each other. The

IID data Z is generated by Z = (Z,,---,Z,), and Z,

follows the distribution of Z, ~ F(0,1).

(2) Relevant and identically distributed ( RID) ;
The data in every dimension are generated independ-
ently but are related to each other. The generation
method is as follows. First, the d-dimension random
variables W, ,--- W, are generated, and W, follows the
distribution of W, ~ F(0,/i). Then, Z, is generated as
Z, =W,. Next, Z,(2 <i< M) is generated according
toZ, = W, + Z,_,/2. Finally, the RID data Z is pro-
duced as follows: Z = (Z,,--,Z,).

(3 ) Dependent and identically distributed
(DID) : All variables obey the same data distribution
but are not independent. In addition, two dimensions
are independent of each other called “free dimen-
sions” ; the other dimensions are related to them. The
DID data Z is generated as follows. First, two d x 1
random variables A and B obeying the distribution of
F(0,1) are generated. Second, two 1 x M random var-
iables U and V obeying the distribution of F( -1, 1)
are produced. Third, Z,(2 < i < M) is generated
through Z, = A x U; + B x V.. At last, the DID data Z
is produced as Z = (Z,,--,Z,,).

3.2 Relative difference

To validate this method, IID, RID, and DID data
are generated using a normrnd ( ) function of Mat-
lab''®’. The dimension of every data type is as follows:
10, 60, 110, 160, 210, 260, 310, 360, and 410.
The number of data in every dimension is 1000. In ad-

dition, the relative difference between the farthest and

nearest neighbors is calculated as follows' "’ .
Dmaxn - Dminn
e (8)

avgn

and D

minn 3 avgn

where D D

and average similarities in the d-dimensional space,

are maximal, minimal,

maxn ¥

respectively. The relative difference results are shown
in Figs 3 ~5.

According to the characteristics of the results,
similarity measurement methods are divided into two
types: the first includes Manhattan distance, Euclidean
distance, Hsim(X,Y), Gsim(X,Y), Close(X,Y),
and Esim(X,Y); and the others include Psim(X,Y)
and NPsim(X,Y). The relative difference of the sec-
ond type of methods is two or three magnitudes larger
than that of the first type of methods. Therefore, the
performance advantage of the second method type is
obvious.

The relative difference of Psim(X,Y) and
NPsim(X,Y) has no differentiation degree. Thus, the

statistical analysis needs to be studied further.
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3.3 Statistical analysis

To compare the effect of Psim(X,Y) and
NPsim(X,Y), the maximum, minimum, and average
of DID data in different dimensions are calculated, as
shown in Fig. 6. The experimental results indicate that
the similarity range of Psim(X,Y) increases with the

dimension. Thus, the function is not suitable for the
similarity comparison in different dimensions. Howev-
er, the problem does not exist in NPsim(X,Y).
Table 1 lists the numbers of Psim( X,Y) whose value is
greater than 1 in different dimensions. The number of

5
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Fig. 6 Statistical value of various similarity measurement
methods for DID data
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Table 1 Number of NPsim (X, Y) > =1 in different dimensions
Dimension 10 60 110 160 210
Number 168604 120373 113248 10452 84672
Dimension 260 310 360 410 260
98429 63024 72015 58851 98429

Number

Psim(X,Y) in every dimension is 1000 x 1000 =1,
000,000. In addition, the 5% ~ 17% result is more
than 1, and thus the comparison of similarity in differ-
ent dimensions is not possible. Therefore, NPsim(X,
Y) can satisfy the requirement of similarity comparison

in different dimensions.
4 Conclusion

The similarity measurement is the basis of data-
mining algorithms, such as clustering, classification,
and nearest neighbor. However, owing to the curse of
dimensionality,, the measurement always fails in high-
dimensional space. A similarity measurement method
of high-dimensional data based on a normalized net lat-
tice subspace is proposed. In this method, data range
of each dimension is divided into several intervals, and
the components are mapped onto the corresponding in-
tervals. During similarity calculation, only the compo-
nent in the same or adjacent interval is used. This
method can avoid the similarity effect that generated
from the sparse or noisy dimension. To validate the
proposed algorithm, three types of distribution data are
used in the experiment, and another seven method
types are compared. The experimental results show that
the proposed method is suitable for similarity measure-
ment in high-dimension data.

In the future, the weight calculation in different
dimensions, and the automatic updating strategy of a
spatial grid will be studied. In addition, the proposed
method will apply a related data-mining algorithm,
such as clustering or correlation analysis.
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