HIGH TECHNOLOGY LETTERSIVol. 23 No. 1IMar. 2017 Ipp. 109 ~116

doi:10.3772/j. issn. 1006-6748.2017.01. 015

A study on TCP performance of crowdsourced live streaming”

Zhou Jianer (JH#E)@ ™ | Wu Qinghua” , Li Zhenyu" , Xu Chuan™" , Xie Gaogang"
(" Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China)
(™ University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
y y jing
(™ College of Communication, Chongqing University of Post and Telecommunication, Chongqing 400065, P. R. China)

Abstract

The prevalence of smart phone and improvement of wireless net promote the usage of
crowdsourced live streaming, where individual users act as live streaming sources to broadcast them-
selves online. Characterizing the performance and identifying its bottleneck in such systems can shed
light on the system design and performance optimization. TCP performance of a commercial
crowdsourced live streaming system is examined by analyzing packet-level traces collected at stream-
ing servers. TCP stalls that heavily hurt the QoE of user have been identified. In particular, the
TCP stalls account for as much as 31.6% of the flow completion time for upload flows and result in
abandonment of upload on the corresponding channels. Stalls caused by timeout retransmissions are
further dissected and timeout retransmission characteristics are revealed to be dependent on the video
encoding methods. These findings provide new insights in crowdsourced live streaming systems and
can guide designers to improve the TCP efficiency.

Key words: crowdsourced live streaming, TCP performance, system design and measurement

0 Introduction

The flourish of mobile terminals and wearable de-
vices has greatly stimulated the development of online
video streaming, such as FaceTime, Twitch. tv, intelli-
o these

crowdsourced live streaming emerges as a new way of

gent monitors Among applications ,
video sharing, where individual users act as live
streaming sources to broadcast themselves online. The
multi-source nature of streaming leads to a significant
difference between crowdsourced live streaming and
traditional live streaming.

Traditional live streaming has stable providers and
multiple viewers, such as TV and football broadcast-

231 As such, uploading video content to live

ers
streaming servers is not a performance bottleneck at
all. In addition, as the popularity of individual chan-
nels is predicable, content delivery network (CDN)
can be leveraged for improved performance by replica-
ting streaming content on CDN servers located in the
regions where the channels are predicted to be popu-
lar'*",

Crowdsourced live streaming systems, on the other
hand, host live streaming channels broadcasted by in-

dividual users. Uploading video content to live stream-
ing servers thus might be a performance bottleneck that
impacts not only on the uploading itself, but also the
views that subsecribe to the corresponding channels.
Besides, the popularity of channels is less predictable,
and thus it is challenging to deliver the streaming via
CDN'*".

analysis of the crowdsourced live streaming system’ s

These unique features lead to a quest for the

architecture and the performance from a network’ s per-
spective.

Recently, much attention has been paid to the
study of crowdsourced live streaming systems. Simo-
ens, et al. 7' proposed a framework for streaming store
and search, leaving the delivery problem untouched.
Zhang, et al. '® collected traces from clients to “infer”
the system architecture and examine the user behavior.
Jain, et al. ”' proposed a system to index the live
streaming automatically with examining video frames.
To accommodate the geo-distributed streaming, Chen,
et al. '

fective cloud service, which facilitated deployment of

presented a framework that used the cost-ef-

crowdsourced live streaming system and the improve-
ment of streaming quality. Stohr, et al. "’ examined
the usage pattern of a crowdsourced live streaming sys-
tem, and pointed out the difference between crowdsourced

(@D Supported by the National Basic Research Program of China (2012CB315801) and the National Natural Science Foundation of China (No.

6157060397).

@2 To whom correspondence should be addressed. E-mail; zhoujianer@ ict. ac. cn

Received on Feb. 17, 2016

110

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

live streaming and traditional live streaming. These stud-
ies have not analyzed the system from TCP (transmission
control protocol) performance perspective as done in this
paper.

The dataset used in this paper consists of packet-
level traces from front-end servers of a commercial
crowdsourced live streaming system. The system adopts
a tailored video encoding technique, where three types
of video frames are used: intra frame (I frame) , pre-
dictive frame (P frame), and voice frame (V
frame) '’

with particular focus on the TCP stalls. Then the im-

The TCP performance is first examined

pact of video encoding on TCP stalls is analyzed. To
the best of our knowledge, the work is the first to study
the TCP performance of crowdsourced live streaming
systems at server side in wild. The main contributions
are as follows,

e TCP stalls prolong the time required to upload
content by over 30% . In addition, the upload flow
throughput drops greatly as the packet reordering rate
grows. The performance degradation caused by TCP
stalls results in abandonment of uploads and viewing
sessions.

e For specific channels, the performance of up-
load greatly affects the performance of views on the cor-
responding channels. In particular, about 40% of TCP
stalls in upload leads to no data transferring to sub-
scribers.

® The characteristics of timeout retransmission,
an expensive packet loss recovery mechanism and one
major cause for TCP stalls, are dependent on the types
of frame.

Based on the findings above, corresponding impli-
cations are proposed. As the upload performance is vi-
tal to the overall performance, the front-end servers
with better network should be selected for the video
sharing users. To reduce the timeout retransmission in-
fluence, more aggressive timeout retransmission recov-
ery methods should be deployed on front-end servers.

The rest of the paper is structured as follows. Sec-
tion 1 describes the system architecture and the dataset
used. In Section 2 the TCP performance for both up-
load and download phases are investigated. Section 3
examines the impact of streaming frames on perform-
ance. Section 4 summarizes our main findings and im-
plications. Section 5 concludes the paper.

1 System overview and dataset
1.1 Background

Fig.1 shows an examined architecture of the
crowdsourced live streaming system. The system con-

sists of five components: a centralized controller, front-
end servers, distributed storage system, streaming sha-
ring users (i. e., publishers) and streaming viewing
users (i. e., subscribers). The centralized controller
decides the front-end server to serve the streaming sha-

ring or requests. For such live streaming system a con-
[13]

troller can make it effective

Video share

— = control
— video

Fig.1 An overview of the crowdsourced live streaming system

Streaming frames generated by streaming sharing
users are uploaded to storage system via the selected
front-end server through TCP connections. Streaming
viewers (i. e., subscribers) request the desired
streaming (i. e. , channels) from storage system via
the selected front-end server, also using TCP. Note
that the front-end servers are deployed in geo-distribu-
ted locations and are scheduled by controller. Hence,
the front-end server that serves the subscribers may be
different from one that receives the streaming content
from publisher. In this work, performance of flows be-
tween front-end servers and users is analyzed.

H. 264 is used as the streaming codec in the sys-
tem. There are 4 types of frames; I, P, bi-directional
(B) and V'
largest size (10 —100 kbytes) and the slowest produc-
tion rate (0.25{/s). Frames P and B (both of which

are called P frame for short in the follows) are predic-

Frame 1 is the key frame with the

ted frames with size ranging between 2 and 10 kbytes.
The average production speed of frame P is 25{/s and
is adaptive according to the network quality. Frame V
carries voice data with size less than 1 kbytes and pro-
duction speed of about 25{/s.

1.2 Dataset

The packet-level dataset used for analysis was col-
lected via tcpdump at one of the front-end servers for
one week in July, 2015. Both the upload and down-
load flows that go through the front-end servers were
captured. Overall, 4.88 billion packets, correspond-
ing to 1.24 million flows were collected. The average
packet size is 1028 bytes and average flow size is
3.86MB.

Fig. 2 shows the variation of online users over one

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

111

week. Due to business considerations, the real number
of users is not revealed. Sharing and viewing workloads
follow similar diurnal pattern over the week: the num-
ber of online users continues to grow from 6AM and
reaches peak at 11PM. This is not surprising because
most of users take the crowdsourced live streaming as a
kind of entertainment and thus do not use it during

work time.

4n | | Viewers 1

- - - Sharing users

Number of users

Mon Tue Wed Thu Fri Sat Sun

Date
Fig. 2

Number of viewers (subscribers) and sharing users

(publishers) over one week

Fig.3 shows the distribution of flow completion
time (FCT) for sharing users (i. e., upload flows)
and viewers (i. e., download flows). For upload
flows, FCT measures the duration between the first
synchronous (SYN) packet received by front-end serv-
ers and the last byte of data from the client. While for
download flows, FCT is the duration between the first
SYN packet and the acknowledgment of the last byte
received by front-end server. Servers send keep-alive
packets when clients do not upload data and terminate
the flows if there is no data from client for 20s, which
explains the observation from Fig.3 that nearly all of
upload flow completion time is more than 20s. It can
be also observed that for both upload and download
flows, about 60% of flows are less than 30s, indicating
that most of users view or share short streaming. Since
users might abort viewing before publisher terminates
the video sharing process, the FCT of upload flows is
in general longer than that of download flows.

1.0
0.8 g
o 06f]
3
04} 8
02| —" Viewers 1
I - - Sharing users

0.0

1 10 100 1000
Flow completion time (s)

Fig.3 Upload and download flow completion time

Fig. 4 shows the distribution of throughput for up-
It can be observed that the
throughput is comparable for the two types of flows and

load and download.

is relatively low (the median throughput is less than
100kB/s) , because the throughput is heavily dependent
on the frame production rate of publisher, which tends
to be lower than the available bandwidth.

1.0 T T

:
I - -° Sharing users E
1,

0.8r

—" Viewers

0.6 - i

CDF

0.4+ P

0.2r)

0.0 == -
1k 10k 100k M

Rate (B/s)

Fig.4 The throughput of upload and download flows

2 System measurement

In this section, the TCP traces are used to exam-
ine the TCP performance of crowdsourced live stream-
ing system. The upload TCP flows are analyzed, which
transfer data from streaming publishers to front-end
servers, and then detail the download TCP flows,
which move video data from front-end servers to sub-
scribers. Finally, the impact of upload performance of
a channel on the download flows is studied.

2.1 Analysis of TCP upload flows

Streaming publishers upload streaming data to
front-end servers once new frames are generated in
their devices. Two factors may influence the upload
process: one is the interval of video frame producing
process and the other is the delay of the network.

TCP stall is defined as an event where the dura-
tion between two consecutive packets received/sent by
SRTT, RTO). Pa-

rameter 7 is set to 2 in this work as the TCP endpoint is

the server is larger than min (7 -

able to at least receive or send one packet during 2 x
RTT in the ideal condition. As the front-end server
(where we collected the data) is the receiver for up-
load flows, only the 3-way handshake (3WHS) round
trip time (RTT) can be measured during which servers
send a SYN packet and receive the corresponding ac-
knowledgment (ACK). Thus, RTT is used in 3WHS
as the smooth RTT (SRTT) for this flow.

The front-end server may receive a series of disor-
dered packets that may be reordered by the network, or
retransmitted because the previously transmitted seg-
ment is dropped. The front-end server could not distin-

112

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

guish whether the disordered packet is a packet reorde-
ring or packet retransmission. When a stall happens,
receivers may have received a series of disordered
packets, or sequential packets. The stalls of the former
is further distinguished as reordering stalls and the lat-
ter as normal stalls. Keep-alive stalls are further de-
fined as those caused by keep-alive packets sent by
servers every J5s.

It is found that the stall time accounts for 31.6%
of the completion time in upload flows. Among these
stalls, normal stall contributes 93.5% of stall time,
reordering stall contributes 1.3% of stall time, and
keep-alive stall accounts for 5.2% of stall time. As the
reordering stall just contributes 1.3% of stall time, the
packet loss or reordering is not the main cause of stalls
in upload flows. Instead, the interval of video frames is
the main factor that influences the performance of up-
load flows. This can also be confirmed by the fact that
the median throughput of upload flows is 60kB/s,
much lower than the available upload bandwidth.

We define reordering packets as the packets which
do not arrive in order. And we further define the reor-
dering rate as the ratio of reordering packets to all data
packets. It is found that the overall reordering rate is
about 1% and among those disordered packets, 6% of
them suffer from timeout reordering, in which cases the
interval between two disordered packets is larger than
0.2s (i. e., the minimum retransmission timeout
(RTO) set in Linux kernel).

Although packet loss or reordering happens rare-
ly, once it happens, it will significantly impact the
performance of upload flows. Packet reordering strongly
correlates with the upload flow size, especially when
the reordering rate becomes large. Table 1 shows the
impact of reordering rate on upload flow size. We can
see that a higher reordering rate leads to lower average
throughput. The streaming publishers might abort the
sharing in the case of lower throughput, which further
results in smaller flow size and shorter flow completion
time. For example, when the reordering rate is larger
than 20% , the mean size of upload flows is only
0.73MB, much smaller than the flow size (5.1MB)

when the reordering rate is less than 10% .

Table 1 Impact of reordering rate on upload flows
Reorderin, Average
rate) throughiut Flow size Fet
<10% 64kB/s 5.1MB 87.7s
10 ~20% 48kB/s 4.7MB 72.8s
>20% 17kB/s 0.73MB 60.7s

2.2 Analysis of TCP download flows

The stall in download flows is defined the same as
that in upload flow (see Section 2.1). As the front-
end server is the TCP sender in the video content dis-
tributing phase, RTT is computed dynamically each
time it receives acknowledgment of the transmitted da-
ta. The stall time occupies 35.2% of the completion
time of download flows.

Based on the position where each stall happens,
TCP stalls are classified into the five types as shown in
Table 2. Timeout stalls are those caused by the timeout
retransmissions ; resource constraint stall happens when
there is no data in the buffer to transmit and it is often
caused by delaying upload; packet delay stalls happen
when ACKs are delayed, either by network or receiver;
zero receive windows (rwnd) stalls happen when view-
ers do not have enough buffer to store the data; keep a-
live stalls caused by the fact that when there is no data
to transmit, the front-end server will send a keep-alive
packet every 5s to prevent the connection from being
terminated.

Table 2 shows the ratio of different types of stalls
in terms of time. It can be seen that the resource con-
straint accounts for 39.4% of download stalls, the lar-
gest part amongst all, which is partially caused by the
stalls in upload flows. The publishers do not upload
any data during stall time, which in turn leads to scar-
city of video data to the corresponding subscribers.

Table 2 Ratio of different stalls in download flow

Rsre Pkt Zero Keep Time

cons. delay rwnd alive out

% 39.4 8.2 16.3 10.1 22.8 1.5

Type Others

About 16.3% stalls happened due to zero rwnd,
which implies that the viewers can not receive data,
the performance of viewing video will be impacted
greatly. Keep alive stalls on the other hand account for
10. 1% , which happens because users might wait for
some time after the completion of streaming share by
publishers. As many as 22.8% of stalls belong to
timeout retransmission due to network congestion. In
Section 3, further analysis will be done to the timeout
retransmission stalls.

The impact of RTT on TCP throughput is exam-
ined further. The flows with smaller RTTs are more
likely to get high throughput, and the variations of
RTTs will result in packet delay stalls'”’. RTT is de-
termined by two factors. One is the number of hops be-
tween two nodes, which is controlled by the route algo-
rithm. The other is the packets’ buffering time at rout-
ers, which is controlled by both the router buffer ca-

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

113

pacity and the volume of packets in the network.

In Fig. 5 variation of RTTs is analyzed when the in
_ flight size is varied, which represents the amount of
data bytes that have been sent already but not yet re-
ceived by the viewers. Specially;

N
w
T

1.5F

11|

0.0 7
< g xé\“%\‘ 31\’-"6\‘ 6“,32\‘ S 6k
in_ flight(byte)
Fig.5 Ratio of RTT over RTT _ 3WHS when
varying in _ flight

Ratio of RTT and RTT_3WHS

in _flight = packets ous + retrans _out

— (sacket _out + lost _out) (1)
where packets _ out represents the data bytes between
snd _una (the packet with highest sequence number
the receiver has acknowledged) and snd _ nat (the
next new byte the sender would transmit) , retrans _out
is the data bytes which have been retransmitted but not
yet acknowledged, sacked — out refers to the selective
acknowledgment (SACK) data bytes, and lost out
measures the estimated dropped data bytes. the varia-
tion of RTT is examined by comparing it with RTT cal-
culated in the 3WHS phase (referred to as RTT _
3WHS). From Fig.5, it can be seen that as the in
flight becomes large, RTT also becomes large. When
the in _ flight is 64kB, the RTT is even 2.6 times lar-
ger than the RTT which is in the 3WHS phase. This is
because when there are a large number of in _ flight
packets, routers in the path need more time to process
them and thus result in larger RTT.

2.3 Impact of upload performance on download
performance

So far, the TCP upload and download flows have
been investigated in the system separately. However,
an upload flow may have an impact on the performance
of the download flows that subscribe to the correspond-
ing upload flow, i. e. , which belong to the same chan-
nel. For example, reordering in upload flows may
cause no data transferring to download flows. In this
section, the impact of upload performance on the
download performance will be detailed.

The system assigns each live streaming a unique
ID for sharing and viewing , the upload and download

flows can be matched by the video ID. Note that since
the data was collected from one front-end server, not
all flows could be matched, since upload and download
flows of the same channel might be served by different
front-end servers.

To measure the impact of stalls in upload flows on
the download flows, each pair of upload and download
flows will be matched first by the same video ID. In
time T, if upload flows have a stall, then if download
flows also have a stall in the interval of [T +1s, T —
1s] will be searched. If download flows do have, such
stalls will be defined as stalls caused by upload flows.
It is found that 37.2% of stalls in upload flows cause
stalls in download flows. Table 3 shows different down-
load flow stalls caused by upload stalls. From the ta-
ble, we can see that 87.6% stalls caused by upload
flows are resource constraint, as a stall in upload usu-
ally results in no data to send in download flows.
7.1% stalls are caused by timeout retransmissions, be-
cause that lack of data will result in not enough du-
packs to trigger fast retransmit, a less expensive packet

loss recover mechanism than timeout retransmission.

Table 3 Impact of upload stalls to download flows
Type Rsrc Time Pkt Zero Kl?t‘p Other
cons. out delay rwnd alive
% 87.6 7.1 4.5 0 0 0.7

3 Analysis of streaming frames

As mentioned in Section 1, frame size and pro-
duction speed are dependent on frame types, which
may result in different network performance. In this
section, the performance of frames I, P and V in TCP
download flows will be analyzed in detail.

3.1 Base video frame information

Table 4 shows the statistics on different types of
frames. Frames P take up 82.8% and constitute the
largest part of all frames. Frames V have the smallest
percentage, just 5.8% . Frames I on the other hand
account for 11.5% . In the system, the production in-
tervals of I and V are set to 4s and 0. 04s respectively.
For download flows, the intervals begin as the server
sends out a frame and end until it sends out next frame
of the same type. We found the actual intervals of
frames I and V are 4. 85s and 0. 069s respectively, be-
cause RTT jitter and packet loss may delay the frames.
Frame P on the other hand has production interval

0.081s.

114

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

Table 4 Statistics of three types of frames

Type Per Interval Size Loss Timeout/loss
(%) (s) rate (%)
I 11.5 4.85 30kB 1.1 11.8
P 82.8 0.081 3.4kB 0.6 11.3
v 5.8 0.069 189bytes 0.61 14

Frame 1 is the largest frame whose average size is
30kB, and its average size is 3.4kB while frame V is
just 189 bytes, much smaller than the other two. The
difference in frame size results in the distinct behaviour
of burst for the three types of frames as shown in
Fig. 6. Frame V experiences no burst packet as its size
is less than one packet size (most of the packet size is
around 1460 bytes, the same with maximum transmis-
sion unit (MTU)). For frame P, 15% of the bursts
contain over 5 packets. About 40% of frames I lead to
more than 5 burst packets. Routers are likely to drop

' so the packet loss rate for frame T is

burst packets'
1.1% , which is higher than other two frames. In fact,
P and V frame’ s packet loss rates are 0.6% and

0.61% respectively.

106 lvees
08t
(o]
23)
g ar ¢ I frame 1
-O- P frame
04 - A -V frame 1
0.2 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Burst packets number

Fig.6 Burst packets of different frames

Among the lost packets, some result in timeout re-
transmissions, as they cannot be recovered by fast re-
transmit. For frame I, 11.8% of lost packets result in
timeout retransmissions while for P and V the ratios are
11.3% and 14% , respectively. In what follows, the
timeout retransmissions of different frames will be de-
tailed.

3.2 Timeout retransmission of streaming frames
If fast retransmit fails to be triggered to recover
packet loss, sender has to rely on costly timeout re-

. . [17]
transmission .

According to the situation when the
timeout retransmission happens, the retransmission can
be divided into several types. If the retransmitted
packet by fast retransmit is dropped by the network,
timeout retransmission has to be triggered and this
timeout retransmission is referred to as double retrans-

mission. If the lost packet is in the last three packets of

the flow, there are not enough duplicate acknowledg-
ments (dupacks) to trigger fast retransmit, it is re-
ferred to as tail retransmission. Insufficient number of
dupacks to trigger fast retransmit may be also due to
that the server sends less than 4 packets out (limited
by either congestion window (cwnd) or rwnd), and
referred to as less packet (pkt) retransmission. The
ACK delay/loss or all packets sent out being lost will
also result in timeout retransmission, as in both situa-
tions, no dupacks can be produced. These two types of
timeout retransmissions are referred as ACK delay/loss
and continuous loss, respectively.

Table 5 shows the ratio of each type of timeout re-
transmission for frames I, P and V. Those that cannot
be classified into any of the above types are referred to
as others. For all types of frames, double transmission
contributes the largest part, 46.8% for frame I,
44.7% for frame P and 47.2% for frame V. That is
because when the network drops a packet, the network
has a high probability to become congested so the re-
transmitted packet via fast retransmit is likely to be
dropped again. For frame V, the ratio of less pkt re-
transmission is 30.8% , much higher than that for 1
and P (11.4% and 20.2% respectively). As frame V
is less than one MTU, when sending frame V, there
are often fewer packets in the network compared with
that when sending frame 1. This explains the higher ra-
tio of less pkt retransmission for frame V, and higher
ratio of timeout retransmission for frame V despite the
lower packet loss rate (shown in Table 4). Frames I
and P contain a larger number of burst packets, so for 1
and P the ratios of ACK delay/loss timeout retransmis-
sion are much higher than that for V frame. Also be-
cause different number of burst packets, the ratio of
continuous loss for frame V is O, while those for I and
P are 4.2% and 1.5% , respectively.

Table 5 Timeout retransmissions for different frames

Timeout retrans. type I(%) P(%) V(%)
Tail retrans. 3.8 4.0 5.0
Less pkt retrans. 11.4 20.2 30.8
Double retrans. 46.8 44.7 47.2
ACK delay/loss 19.1 15.1 8.5
Continuous loss 4.2 1.5 0
Others 14.7 14.4 8.5

4 Summary of findings and implications

Table 6 summarizes the main findings and impli-
cations of our measurement results. Overall, our major
findings could be grouped into two categories, one is

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

115

the significant impact of upload performance on the en-
gagement of streaming sharing and on the quality of ex-
perience (QoE) of viewing, the other is the distinct

characteristics of timeout retransmission stalls in the

three types of frame.

Table 6 Summary of findings and their implications

Findings

Implications

37% of stalls in upload flows cause the download flows to
have no data to transmit and thus result in a stall in down-

load.

Increasing the number of packets that send out may en-

large RTT, and further influence the latency of flows.

When reordering rate in upload flow grows, the comple-
tion time of upload flows decreases greatly, which means
the users tend to terminate streaming sharing if the net-

work quality becomes bad.

Timeout retransmission contributes 29. 8% of stalls in

download process.

The three types of frame experience different timeout re-
transmission characteristics due to their distinct frame
production speeds and frame sizes. , e. g. , frame I expe-
riences more continuous loss stalls while frame V experi-

ences more less pkt retrans stalls.

Optimizing of upload network and improving the perform-
ance of upload flows may greatly improve the performance

of download flows.

Trade off the number of sent out packets and the RTT can
prevent TCP flow from increasing its latency.

Service provider could deploy front-end servers closer to
streaming sharing users to optimize the upload perform-

ance, which may greatly improve the QoE for users.

Costly timeout retransmissions in short flows could be
eliminated through slightly aggressively retransmission
strategies, e. g. , Refs[17,18].

Transmit each type of frame in separate connections, and
optimize each connection by eliminating the timeout re-
transmissions according to the characteristics of frames

and connections.

As the upload performance is vital to the overall
performance of the system, more front-end servers
should be deployed in different locations and the nea-
rest one with better network quality (i.e. , lower delay
and lower packet loss rate) should be selected for the
video sharing users, for gaining a better upload per-
formance.

Even though previous work”"®" found the great
degradation of performance of short flows due to timeout
retransmission, it is further found that flows may exhib-
it distinet characteristics of timeout retransmission due
to different frame production intervals and frame sizes.
To eliminate these costly timeout retransmissions, one
could adopt existing solutions like TLP'"7’ | S-RTO'"*.
Service provider could also optimize the performance by
transmitting different frames in separate connections.
Since the drop of a P or V frame can only hurt the
watching experience slightly, P and V frames could be
delivered in UDP connections and frame [is transmit-
ted in TCP connections. Divide-and-conquer optimiza-
tion of each type of connections may bring performance
improvement of the overall system.

5 Conclusion

A commercial crowdsourced live streaming system
is examined from the perspective of TCP performance of

flows and the impact of video codec using packet-level
TCP traces. The upload process is the key as it signifi-
cantly impacts the throughput of streaming download
flows, which is exemplified by the fact that 37% of
stalls in upload flows trigger stalls in download flows.
Moreover, the three types of frames result in different
characteristics of timeout retransmission, a costly pack-
et loss recover mechanism. The findings shed light on
the design of high-performance crowdsourced live

streaming systems.

References

[1] Ishimaru S, Kunze K, Kise K, et al. In the blink of an
eye; combining head motion and eye blink frequency for
activity recognition with google glass. In: Proceedings of
the 5th Augmented Human International Conference, Ko-
be, Japan, 2014. 15-18

[2] Mukerjee M K, Hong J A, Jiang J, et al. Enabling near
real-time central control for live video delivery in CDNs.
ACM SIGCOMM Computer Communication Review, 2015,
44(4) . 343-344

[3] Yin H, Liu X, Zhan T, et al. Design and deployment of
a hybrid CDN-P2P system for live video streaming: expe-
riences with LiveSky. In: Proceedings of the 17th ACM
International Conference on Multimedia, Beijing, China,
2009. 25-34

[4] XuY, YuC, LiJ, et al. Video telephony for end-con-
sumers: measurement study of Google +, iChat, and
Skype. In: Proceedings of the 2012 ACM Conference on

116

HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

Internet Measurement Conference (IMC), Boston, USA,
2012. 371-384

Mukerjee M K, Naylor D, Jiang J, et al. Practical, real-
time centralized control for CDN-based live video
delivery. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIG-
COMM), London, UK, 2015. 311-324

Yin X, Jindal A, Sekar V, et al. A control-theoretic ap-
proach for dynamic adaptive video streaming over HTT.
In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM) ,
London, UK, 2015. 325-338

Simoens P, Xiao Y, Pillai P, et al. Scalable crowd-sour-
cing of video from mobile devices. In: Proceeding of the
11th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys), Taipei, China,
2013. 139-152

Zhang C, Liu J. On crowdsourced interactive live stream-
ing: a Twitch. tv-based measurement study. In: Proceed-
ings of the 25th ACM Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video (NOSS-
DAV), Porland, USA, 2015. 55-60

Jain P, Manweiler J, Acharya A, et al. FOCUS: cluste-
ring crowdsourced videos by line-of-sight. In: Proceed-
ings of the 11th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), Roma, Ttaly, 2013.
90-104

Chen F, Zhang C, Wang F, et al. Crowdsourced live
Proceedings of the IEEE
Conference on Computer Communications (INFOCOM) ,
Hong Kong, China, 2015. 2524-2532

Stohr D, Li T, Wilk S, et al. An analysis of the YouNow
live streaming platform. In; Proceedings of the IEEE
Conference on Local Computer Networks (LCN) , Dubai,
UAE, 2015. 673-679

Schwarz H, Marpe D, Wiegand T. Overview of the scala-

streaming over the cloud. In:

[13]

[14]

[15]

[16]

[17]

(18]

year

ble video coding extension of the H. 264/AVC standard.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2007, 17(9) . 1103-1120

Ganjam A, Siddiqui F, Zhan J, et al. C3. Internet-scale
control plane for video quality optimization. In; Poceed-
ings of the 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), Oakland,
USA, 2015. 131-144

Seeling P, Reisslein M. Video transport evaluation with
H. 264 video traces. Communications Surveys & Tutori-
als, IEEE, 2012, 14(4) . 1142-1165

Mittal R, Sherry J, Ratnasamy S, et al. Recursively cau-
Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI) , Seattle, USA, 2014. 373-385

Vamanan B, Hasan J, Vijaykumar T N. Deadline-aware
datacenter tcp (d2tep). ACM SIGCOMM Computer Com-
munication Review, 2012, 42(4) . 115-126

Flach T, Dukkipati N, Terzis A, et al. Reducing web la-

tency: the virtue of gentle aggression. In: Proceedings of

tious congestion control. In:

the ACM Special Interest Group on Data Communication
(SIGCOMM) , New York, USA, 2013. 159-170

Zhou J, Wu Q, Li Z, et al. Demystifying and mitigating
TCP stalls at the server side. In: Proceedings of the 11th
International Conference on Emerging Network Experi-
ments and Technologies(CONEXT) , Herdelberg, Germa-
ny, 2015. 99-112

Zhou Jianer, born in 1986. He is now a forth
Ph. D student from Institute of Computing Tech-

nology, Chinese Academy of Sciences. He received his

M. S and B. S degrees both from Chongging University

of Post and Telecommunication. His research interest

is Internet architecture, network measurement.

