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Abstract

The key difficulty of restoring a fuzzy image is to estimate its point spread function (PSF). In
the paper, PSF is modelled based on modulation transfer function ( MTF). The first step is calculat-
ing the image MTF. In the traditional slanted-edge method, a sub-block is always manually extrac-
ted from original image and its MTF will be viewed as the result of the whole image. However, hand-
craft extraction is inefficient and will lead to inaccurate results. Given this, an automatic MTF com-
putation algorithm is proposed, which extracts and screens out all the effective sub-blocks and calcu-
lates their average MTF as the final result. Then, a two-dimensional MTF restoration model is con-
structed by multiplying the horizontal and vertical MTF, and it is combined with conventional image
restoration methods to restore fuzzy image. Experimental results indicate the proposed method imple-
mentes a fast and accurate MTF computation and the MTF model improves the performance of con-

ventional restoration methods significantly.

Key words: fuzzy image, modulation transfer function ( MTF) , slanted-edge method, auto-

matic computation, MTF restoration model

0 Introduction

Fuzzy images are very common in the digital im-
age processing field and their restoration is of great sig-
nificance because blurriness in the image not only in-
fluences understanding or interpretation for human ob-
servers, but also subsequent numerous applications.
The essence of restoring fuzzy images is to figure out
point spread function ( PSF) of the images, which is
also the key difficulty to be solved in traditional fuzzy
image restoration algorithms. However, PSF is difficult
to be estimated in spatial domain since the fuzzy images
always suffer from different and complex processing and
handling. In the theory of image restoration, PSF and
MTF are the expressions of the same physical quantity
in spatial and frequency domains respectively, which
can be converted to each other by two-dimensional
Fourier transform and inverse Fourier transform. There-
fore, it is a solution for estimating the restoration model
for fuzzy images based on MTF. Then the model can be
applied to traditional image restoration algorithms and
the fuzzy images can be restored.

The MTF-based fuzzy image restoration algorithms

[14]

are widely studied in remote sensing images™ . How-

ever, researchers mainly focus on the applications and
adjustments of MTF to improve the effects of image res-
toration, while pay little concern about the calculation
of MTF values. In Refs[5-7], MTF was combined
with conventional restoration algorithms to increase the
sharpness of original images. Exponential methods
were put forward to stretch MTF curve of images to in-

Ref. [9] raised the

ability of noise resisting of MTF extraction via enhan-

crease the contrast and clarity'®’.

cing the local image by homomorphic filter algorithm.
To further optimize the quality of restored images, MTF
was integrated with other algorithms ( such as super
resolution) to deal with image deburring, and results
showed that the estimated precision of PSF was greatly
improved''”’. At present, the computation algorithms
of image MTF are mainly divided into three categories
according to different shape features of the sub-blocks
extracted from the image: pinhole image algorithm,
slit-image algorithm and slanted-edge algorithm'""*'.
Compared with the other two algorithms, the slanted-
edge algorithm is most widely used in practical applica-
tions for the following reasons: 1) slanted edges are
very common in digital images, leading to a great pos-
sibility to obtain slanted-edge sub-blocks for MTF com-

putation; 2) the energy of a slanted edge is larger than
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that of a pin-hole or a slit, making the MTF results
more accurate and robust. However, the existing slant-
ed-edge algorithm has two disadvantages. Firstly, the
slanted-edge sub-blocks are usually extracted from ima-
ges by manual handling and operations, which is ineffi-
cient and time-consuming. Secondly, in conventional
slanted-edge method, only one sub-block is manually
extracted and its MTF is regarded as the result of whole
image. Such handecraft extraction is inefficient and will
lead to inaccurate results.

In this work, the above two problems are solved
by proposing an automatic MTF computation algorithm
with the following procedures

(1) Extracting sub-blocks from original image au-
tomatically ;

(2) Adopting and improving the traditional slant-
ed-image method for MTF computation for each sub-
block ;

(3) Averaging the MTF values of all the sub-
blocks as the final MTF result of the fuzzy image.

Then, a two-dimensional MTF restoration model
will be constructed and combined with the traditional
image restoration algorithms to recovery the fuzzy im-
age.

The rest of this paper is organized as follows. In
Section 1 an improved automatic MTF computation al-
gorithm is proposed. Then the MTF-based restoration
model is constructed and integrated into the conven-
tional fuzzy image restoration methods in Section 2.
Section 3 presents two kinds of comparison experiments
on MTF computation and fuzzy image restoration. Final

remarks are contained in Section 4.

1 Automatic MTF computation

The complete process of fuzzy image restoration
using MTF is shown in Fig. 1.

3
MTF Restoration
Fuzzy Image Mexdsl
1
Automatic MTF Conventional
Computation Image Restoration
1 Methods
Extraction of| | Slanted- | | Average of !
{| Sub Images | |edge Method| |MTF Values / Recovered Image
’ |

Fig.1 Flowchart of the process of fuzzy image
restoration using MTF

1.1 Restricted conditions of sub-blocks

Successful MTF computation for slanted-edge
methods requires that selected sub-blocks with edges
are limited by some specific conditions. Fig.2 shows

the acceptable sub-blocks with slanted edges, which
include both vertical edges and horizontal edges.

Fig.2 Acceptable sub-blocks with slanted edges

(1) Contrast

If the slanted-edge sub-block is of low contrast, it
means that the differences across edge are small, it will
always give rise to unreliable MTF results. Therefore,
the contrast of sub-block should be limited. According
to experimental results'"”’ | the threshold of image con-
trast is 0. 2.

(2) Edge angle

Edge angle is defined as the angle between the
edge and the positive horizontal axis across the lower
end of the edge. If the edge angle is too few or too
large, there will be few lines across edges, leading to
errors in constructing resampled points for the edge.
Experiments are put forward to figure out the appropri-
ate edge angles. Since (0, 90] and [90, 180) are
symmetrically distributed, different edge angles in (0,
90] are tested and then the corresponding angles in
[90, 180) can be obtained.

Three MTF-based metrics, namely feature fre-
quency (f fre), feature MTF (f MTF) and MTF
Area (MTFA) , are adopted to evaluate the MTF com-
putation results of sub-blocks with different edge an-
gles, all of which follow the same law that the larger
they are, the better the image quality is. Fig. 3 shows
the computation results of three metrics of different
sub-blocks. Observed from the distributions of three
curves, it can be deduced that the optimal edge angle

range is (0 30] and [60, 90).

1.5
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Fig.3 Distributions of three MTF-based metrics of sub-blocks

with various edge angles

=]

(3) Edge size
Different edge sizes have little influence on the
computation accuracy of MTF. However, when the
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edge size increases, the sub-block becomes larger as
well, which will increase computational capacity. Fur-
thermore, if the edge is too long, it might not be able
to extract suitable regions as sub-blocks from fuzzy ima-
ges with various image sizes. According to previous
studies'"”’ | the appropriate edge size is about 128 pix-
els, with the corresponding sub-block size of 80 x 100.

1.2 Automatic extraction of sub-blocks

(1) Edge detection. The premise of sub-block
extraction is to find out straight lines in the image.
Hough transform is an efficient method for line detec-
tion since it is of high speed and precision, and easy to
implement. The detected line segments are the poten-
tial edges of sub-blocks.

(2) Edge screening. According to the three limit-
ed conditions of sub-blocks discussed in Section 1.1,
the line segments can be screened out.

(3) Extraction of sub-blocks. A sub-block is a
rectangle with slanted edges in it. With proper edges
obtained, the region of sub-blocks can be extracted by
obeying one basic rule; the short sides of the rectangle
should both intersect the edges. To simplify the extrac-
tion of the rectangle, two ends of the edge are taken as
the center point of the short sides. Then both vertical
sub-blocks and horizontal sub-blocks can be extracted.

1.3 MTF computation for each sub-block

The slanted-edge algorithm is employed to calcu-
late MTF for each sub-block. The detailed steps are
described as follows.

(1) Denoising preprocessing. When restoring the
image in frequency domain, noises ( high-frequency
signals) will be amplified. Hence, self-adapting medi-
an filtering is conducted to reduce the noises in the
fuzzy image.

(2) Sub pixel location and edge fitting. For each
line across the edge, the location of pixel is found
which has the biggest gray scale change and get the po-
sitions of its neighboring three pixels. Then, a cubic
polynomial model can be established (in Eq.1) and
the location of sub pixel can be determined since the
second derivative of sub pixel equals 0 (in Eqs(2)
and (3)). Then the sub pixel line can be fitted with a
polynomial curve fitting method.

flx) =a(1)x’ +a(2)x> +a(3)x +a(4)

(1)

f(x) =6a(1)x’ +2a(2) (2)

x =-a(2)/(3 xa(l)) (3)
where x refers to the locations of four pixels ( columns
for vertical edges and lines for horizontal edges) and

f(x) is the gray scale. a(1), a(2), a(3) and a(4)

are the coefficients to be solved with known x and
().

(3) Pixel resampling and edge spread function
(ESF) fitting. According to the fitted sub pixel line,
all pixels in fuzzy image are projected and resampled to
obtain more points for accurate MTF computation, so it
is with their corresponding gray scales. Then the Fermi
function (in Eq. (4)) is used to fit the ESF curve be-
cause of its superior fitting effect and strong ability to
suppress noises.

fx) = a/(1+e7) (4)
where x is the locations of resampled points and f(x) is
their corresponding gray scales, a expresses the ampli-
tude, c reflects the steepness of the ESF curve, and b is
the horizontal axis of the symmetric center of the curve.
They can be figured out with known x and f(x).

(4) Line spread function ( LSF) computation.
LSF is the first order difference of ESF (in Eq. (5)).
However, experimental results shows that the number
of effective MTF values is not enough and might lead to
errors. To increase the number of MTF values, the ze-
ro padding method is adopted to the both ends of the
LSF curve, as is shown in Fig. 4.

LSF(n) = ESF(n) — ESF(n -1) (5)
where n is the number of resampling points.

(5) MTF computation. Perform Fourier transform
to LSF curve and normalize all the results by the largest
magnitude of the first point.

MTF(n) =| DFT(LSF(n)) | (6)

norm MTF(n) = MTF(n)/MTF(1) (7)
where norm MTF(n) means the normalized MTF val-
ues.
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Fig.4 contrast of MTF before and after zero padding

to LSF curves

1.4 Computation of MTF for overall image

Since the extracted sub-blocks consist of vertical
and horizontal edges, the final MTF result is made up
of two components; vertical MTF vector and horizontal
MTF vector. They are calculated by firstly performing
the slanted-edge method on all the sub-blocks of two
directions and then averaging the whole MTF values to
get the final MTF result.
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2 MTF-based fuzzy image restoration

The construction of restoration model is the main
problem to be solved in conventional image restoration
methods. In this paper, a two-dimensional restoration
model based on MTF values is established by multipl-
ying the vertical MTF vector and the horizontal MTF
vector of the fuzzy image (in Eq.8).

MTF,,, = MTF, x MTF, (8)
where u and v refer to vertical and horizontal directions,
MTF, and MTF, are vertical and horizontal MTF vec-
tors.

When constructing a two-dimensional MTF model ,
the symmetrical mapping method is adopted, namely,
MTF values in the MTF model are the same in the
range of equal-length radius with the model center as
the center of a circle. The MTF values of frequencies
in [0.5, 1] are close to 0 and thereby have little im-
pact on constructing the MTF model used to describe
the point spread in fuzzy images. As a result, only the
MTF values in [0, 0.5] are employed.

The size of MTF

zes of vertical and horizontal MTF vectors, is much

which is determined by the si-

w,v

smaller than that of the fuzzy image to be restored.
Therefore, MTF
terpolation algorithm so that it can be applied to tradi-

.., is interpolated with the bicubic in-
tional image restoration algorithms. In this paper, three
image restoration methods are adopted to recover the
fuzzy image: Wiener filtering (referred to as * WN’ )
algorithm, constrained least square ( referred to as
‘CLS’) filtering and regularized Lucy-Richardson
(referred to as *RLR’ ) algorithm.

3 Experiments

3.1 Evaluation metrics

Objective evaluation metrics are adopted to meas-
ure the performance of image restoration methods.
Three types of metrics, which contain seven indicators,
are employed in the paper.

(1) MTF based metrics

The f fre, f MTF and MTFA are used to evalu-
ate the clarity for restored images. Larger indicators
suggest a better image quality.

(2) Gray scale metrics

(D Signal noise ratio (SNR). It measures the
amounts of noises in the images''®’. Larger SNR indi-
cates fewer noises the image has.

I NN (i o age
M)(sz(x(L’])_x<L"]))2
SNR = 10log =
1« S s a2
x(t, -%x(z,
szv;);(( -2, )

(9)
where M and N are the width and height of image, x(i,
j) refers to gray values, x(i, j) is the average gray val-
ue and £( i, j) represents the estimates of noises.

@) Gray mean grads ( GMG). It describes the
definition of image and sensitively reflects the contrast
in details and texture properties''®’. Larger GMG
means higher image clarity.

GMG =

M-1 N-1

x(i+1,)) —x(i, )] x(i,j+1) —x(i, )]*
2’/2{ /[(+ D) (])];[(]+) Gy )]

(M-1)(N-1)
(10)
(3 Contrast. It has the same effect as the defini-
tion with respect to image quality. The larger the con-
trast is, the deeper the textures are, and the clearer

the visual effects are''®’.

L-1 L-1 L-1
Contrast = an{(ZZP<L’1))} (11)
n=0 i=0 j=0
where | i —j| = n, P(i, ) represents the normalized

gray level co-occurrence matrix, L is the number of
gray levels of the image.

(3) HVS metric

Just noticeable difference quality loss ( JNDQL)
describes the degeneration degrees of image quality
perceived by human visual systems. The smaller it is,
the better the image quality is. The implementation
process is as follows:

First, calculating the perceptual acutance of the
image using contrast sensitivity function ( CSF) .

P
CSF(v) = -0 (12)

Acutance = fMTF(U) X CSF(v)dv/JCSF(v)dv
0 0

(13)
where v refers to the spatial frequency, a = 75, b =
0.2, ¢ =0.8andK = 34.05".

Second, researches indicate there exists an objec-
tive metric (OM) """ which has a certain relation with
perceptual acutance. When acutance is less than
0.8851, the smaller OM is, the clearer the image will
be. While it is greater than 0.8851, the perceptual
image will be very approximate to pristine image, and
the visual quality is no longer linear to acutance.

OM = {0. 8851 — Acutance Acutance < 0. 8851
0 Acutance > 0. 8851
(14)
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Third, calculating the JNDQL based on OM
114 - OM + 605 - OM* + 13966 - OM®
25 =23 - OM + 372 - OM?
(15)

JNDOQL =

3.2 MTF computation experiment

To verify the effectiveness and accuracy of the
proposed automatic MTF computation method, a pub-
licly available computation software, which is sfr-

mat“m

, 1s adopted to conduct the contrast experiment.
Sfrmat software is a Matlab tool that analyzes the spatial
frequency response ( SFR) from an image which con-
tains a slanted edge. It is developed to measure the
resolution for electronic cameras according to standard
ISO 12233.

In this experiment, both the proposed method and
sfrmat are used to calculate the MTF values of the 515
x 600 pixel standard test image for resolution measure-
ments. Both methods are performed with Matlab
R2014a on computers with Intel Core 17-4770 3.4GHz
and 8GB RAM.

As is shown in Fig. 5, the proposed method auto-
matically extracts 14 sub-blocks from the standard test
image, including five vertical and nine horizontal sub-
blocks. In Fig.6(a) and (b), the MTF calculation
results of all the sub-blocks in two directions are dis-
played and the two black curves in bold are their avera-
ges. From the distributions of MTF values, it is obvi-
ous to find that there exist some abnormal values and
the computation errors caused by them can be mini-
mized by calculating the averages of all the MTF val-
ues. With respect to sfrmat, only two sub-blocks, one
vertical and one horizontal sub-block, are manually ex-
tracted and used to calculate the SFR values with sfr-
mat software.

Fig.5 Standard test image for resolution measurements and ex-

tracted sub-blocks by proposed method

Fig. 6 (¢) shows distributions of SFR results by
sfrmat and the average MTF results by the proposed
method. The differences between them are minor. Be-
sides, feature MTF and feature frequency of the two
curves are very close. The main causes for the small

difference are the different number of resample points
and different fitting functions adopted in the two algo-

rithms.
1
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Fig.6 MTF computation results

Table 1 shows the average MTF computation time
of one sub-block by sfrmat and the proposed method.
The time of sfrmat is figured out by calculating the sta-
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tistical average of 20 tests. The proposed automatic
MTF computation method costs much less time than sfr-
mat. This is because the proposed method is fully auto-
matic computation while sfrmat requires that we manu-
ally select appropriate sub-blocks.

As is shown in this comparison experiment, de-
spite the minor calculation differences, the calculation
accuracy of the proposed automatic MTF computation
method is comparable to sfrmat. In addition, the pro-
posed method has the advantages of fast and automatic
MTF computation, demonstrating its effectiveness and
reliability in practice.

Table 1 Time consumed by calculating the MTF values of a sub-
block in the standard test image using two methods
Methods Average time per sub-block (s)
Sfrmat 15.84

Proposed automatic MTF 421

computation method

3.3 Fuzzy image restoration experiment

To evaluate the performance of the two-dimension-
al MTF restoration model in image restoration algo-
rithms, three groups of comparison experiments are
carried out on three fuzzy images, including a natural
scene (NS) image (in Fig.7(a)) from LIVE data-
, a remote sensing (RS) image (in Fig.8(a))

/

/

() CLS (d)RLR

(8) M-CLS

(h) M-RLR
Fig.7 Restoration results of the NS image

and an image made by adding Gaussian noises to the
RS image (GNRS) (in Fig.9(a) ). They are restored
by the following restoration methods, the conventional
image restoration methods (* WN ’, ¢ CLS’,
‘RLR’), their corresponding MTF-based methods
(referred to as ‘M-WN’ , ‘M-CLS’ and ‘M-RLR’ ),
and a blind deconvolution (referred to as *BD’ ) algo-
rithm %

The NS and RS images are tested to validate effec-
tiveness of MTF model to conventional restoration meth-
ods. The GNRS image is used to test the anti-noise
ability of the restoration methods. For clear observa-
tions on image details, the same local regions of GNRS
image and its restored images are shown in
Fig.9(b) ~ (i). Besides, the evaluation results are
listed in Table 2, Table 3 and Table 4, respectively.

The best three values of each indicator are shown in

bold.

() M-CLS (h) MRLR
Fig.8 Restoration results of the RS image
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¥

(i) M-RL

(h) M-CLS
Fig.9 Restoration results of local regions of the GNRS image

Fig.7 and Fig. 8 indicate that, from the perspec-
tive of human visual perception, the restoration effects
of algorithms using MTF models are superior to the
conventional ones. Take Fig.7 for example, the edges

of the texts on the plane in Fig. 7(f), (g) and (h)
become very sharp and the details of grasses on the
ground are clearly represented after restoration with
MTF-based methods. However, the results of the other
conventional algorithms show small improvements in
visual effects. The textures in Fig. 7(b), (c), (d)
and (e) are relatively unclear and their contrast seems
insufficient. The subjective judgment can be confirmed
by the quantitative image quality evaluation metrics in
Table 2 and Table 3. All the metrics of M-WN and M-
CLS achieved the best three values, which demon-
strates significant effectiveness of MTF models in pro-
moting the quality of fuzzy images for WN and CLS.
However, it has little influence on RLR algorithm.
Fig. 9 shows the restoration results of local regions
of GNRS image.

which have no noises, the restoration results of M-WN

For the NS image and RS image

and M-CLS are very close from both subjective and ob-
jective evaluations. But, for the GNRS image, it seems
that CLS and M-CLS achieved better performance than
M-WN according to the

Table 4. However, as shown in Fig.9, it is not con-

evaluation indicators in
sistent with the subjective observations that M-WN is
superior to both CLS and M-CLS. The reason for this
phenomenon is that, compared to M-WN algorithm,
the Gaussian noises in the GNRS image are greatly in-
creased in the recovering process of CLS and M-CLS.
As a consequence, M-WN has a stronger anti-noise
performance than CLS and M-CLS. Besides, RLR
shows a good ability of restraining noise reflected by
higher SNR values as well.

All in all, the MTF restoration model greatly im-
proves the restoration performance by conventional res-
toration methods. Among them, the MTF-based wiener
filtering algorithm has the best performance in both res-
toration effects and noise suppression.

Table 2 Quality evaluation results of the natural scene image

{_fre(cycle

. f MTF  MTFA  SNR(db)  GMG  Comtrast  JNDQL
/pixel )

NS images 0.211 0.022 0.184 68.65 1.965 0.187 30. 604
WN 0.529 0.053 0.117 68.637 5.237 0.922 33.169
CLS 0.528 0.055 0.186 68.677 2.599 0.329 30.598
RLR 0.429 0.049 0.176 68.678 2.749 0.441 31.054
BD 0.405 0. 045 0.161 66.084 0.116 1.444 31.48

M-WN 0. 657 0.058 0.219 68. 686 7.568 0.951 29.456
M-CLS 0.741 0.057 0.22 68.938 7.765 1. 658 29.223
M-RLR 0.416 0.041 0. 166 68. 694 2.509 0.287 31.305

* Best three values of each indicators are shown in bold.
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Table 3  Quality evaluation results of the RS image

f fre (cycle

Jpixel) f MTF MTFA SNR(db) GMG Contrast JNDQL
RS image 0.282 0.025 0.13 67.35 4.095 0.348 32.414
WN 0.323 0.029 0.148 67.435 6.643 0.505 32.137
CLS 0.407 0.036 0.154 67.397 4.502 0.396 31.616
RLR 0.462 0.045 0.145 67.397 4.472 0.392 31.782
BD 0.332 0.042 0.135 69.327 0.53 5.053 32.25
M-WN 0.411 0.054 0.176 67.553 6.641 0.778 31.027
M-CLS 0. 626 0. 061 0.201 67.55 10.033 1.344 31.572
M-RLR 0.392 0.047 0.154 67.327 4.09 0.345 31.59%
* Best three values of each indicators are shown in bold.

Table 4  Quality evaluation results of the GNRS image
f_fre (cycle/pixel) f_MTF MTFA SNR(db) GMG Contrast JNDQL
GNRS image 0.161 0.032 0.104 67.359 6.917 0.5 33.345
WN 0.307 0.042 0.136 67.356 55.987 13.552 31.562
CLS 0.614 0. 0445 0.146 67.06 56.575 15.237 31.381
RLR 0.393 0.0354 0.125 67.591 25.941 3.808 32.241
BD 0.276 0.0271 0.13 69.172 0.733 8.44 8 32.609
M-WN 0.507 0.049 0.172 67.497 13. 154 1.437 31.627
M-CLS 0.727 0.0515 0.139 67.29 63.358 22.479 30.817
M-RLR 0.4 0.0373 0.126 68.136 6.8761 0.497 32.19

* Best three values of each indicators are shown in bold.

4 Conclusions

This study presents an improved fuzzy image resto-
ration approach based on the image MTF. This ap-
proach firstly improves the conventional slanted-edge
method by automatically extracting multiple sub-blocks
from original image and calculating the average MTF
values to reduce the abnormal errors, and secondly re-
coveries the fuzzy image by establishing the two-dimen-
sional MTF restoration model and combining it with the
conventional image restoration algorithms. According to
the comparison experimental results of MTF computa-
tion and fuzzy image restoration, the improved automat-
ic slanted-edge algorithm achieves a rapid and accurate
MTF calculation for fuzzy images, and the MTEF model
improves the performance of conventional restoration al-
gorithms significantly. Since not all the digital images
are equipped with slanted edges, researching on sub-
blocks with other shape features can provide more solu-
tions for automatic MTF computation in the future
work.
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