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Abstract

With the advent of big data, the demand for computing has been increasing in a very large scale

for the past decade, so geographically distributed data centers are erected in the direction of cloud

computing development. A Lyapunov optimization approach is considered for the problem of minimi-

zing energy cost for distributed Internet data centers (IDCs). By capturing the power cost of servers

and cooling systems, the Lyapunov optimization technique is formulated to design a decisive strategy

that offers provable power cost minimization and QoS guarantees. The algorithm performance and ef-

fectiveness are validated via simulations driven by real world traces.
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0 Introduction

The increasing Internet services and cloud compu-
ting have stepped into people lives in recent years so
that big data and computation are migrated to or hosted
on the Internet data centers (IDCs). The total con-
struction area of a huge IDC is 300,000 square meters,
which can host more than one million high-performance
servers. However, consumed energy in IDCs and its
cost have been gradually out of control. Qureshi et al.
discovered that many IDC operators consumed more
than 10 million dollars on their annual electricity
bills'"’ | so the research focuses on how to reduce ener-
gy consumption and electricity cost of IDCs.

Most previous jobs on power management paid
close attention to how to reduce the total energy con-
sumption. However, apart from the energy consump-
tion, electricity price should be more concerned too
since the electricity prices in western countries exhibit
', Although the above

researches probed the energy cost spent in electricity

. . . . . [2-5
time and location diversities "

from servers and practical applications, they ignored
another aspect of energy cost, cooling system. Zhang
designed and evaluated TEStore exploiting thermal and
energy storage techniques to cut the electricity bill for
data center cooling without causing servers in a data

center to overheat'®.

Nevertheless, the study simply
reduced the total cost in a coarse-grain pattern. Their

research ignored the widen difference of server-temper-

atures across diverse server rackets and applications.

An expense minimization of IDC’ s electricity
power ( EMIEP) problem is formulated in this paper to
minimize time-averaged expected energy cost subject to
QoS and average temperature constraints. Meanwhile,
the research designs an algorithm leveraging the Lya-
punov Optimization technique to approximately solve
the EMIEP problem and use real workload trace from
Ordos UniCloud Technology Co. , Ltd. to simulate the
above algorithm. Numerical results illustrate that the
presented algorithm can reduce total energy cost as well
as guarantee QoS and temperature constraints.

1 System model

This section discovers a system model shown in
Fig. 1 and formulates the EMIEP problem. IDC physi-
cally consists of rackets of servers and is logically made
up of a number of applications, each of which sched-
ules its servers to process the arriving service. All re-
quests preparing to enter an application share the same
workload queue and follow the rule that the requests in
buffer will be scheduled to the currently idle server.
Quality-of-service (QoS) requirement must be consid-
ered in each application.

The running servers generate massive waste heat
inevitably. For the sake of the reliability of the serv-
ers, a computer room air conditioner ( CRAC) is used
to regulate the server temperatures by sucking cold air
into the server racks, pushing waste heat out of the ma-
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chine room, and recycling the inside air via the air
chilling unit. Fig. 1 exhibits the air flow of the system.
The light arrow represents cold air and the brunet one
symbolizes hot air exhausted from the racks. Apart
from the above CRAC, an indoor air conditioner main-
tains the machine room temperature to predetermined

Tsp
Air conditioning system

Data center L=

Hotair A 4 4 4

Application Application Application

é /g\ /g\
08 005

Cold air

Fig.1 Layout of IDC Applications

The whole industry is confronted with huge cost of
energy consumption, including server energy consump-
tion and cooling energy consumption. This paper for-
mulates the problem of minimizing the total energy cost
of the data center subject to QoS and server tempera-
ture constraint. The formulated model can be simply
described as follows:

minserver power cost + cooling power cost

subject to

QoS constraint, for each application

Average temperature constraint, for each server

This problem describes three control variables:
number of servers for each application, cold air tem-
perature and electricity price discussed in details in the

following sections.
2 Problem formulation

2.1 Energy cost model
2.1.1 The server side

Let J be the total number of applications hosted in
IDC. At time slot ¢, define p(t), e;(t), L;(t), and
m;(t) as the electricity price, energy consumption for a
single server, the workload, and the number of servers
for applicationj € [ 1,:+,]], respectively. Refs[7,8]
presented a linear function to display the relationship
between power consumption and the server load as fol-
lows

L.f([)
e(t) = a, m (1) + a, (1)

where a, is the marginal energy consumption for CPU
and a, denotes the server energy consumption except
CPU. The total energy consumption of an application j

is E;(t) =m(t) xe(t) =alL(t) +a,m(t), and

the total server energy cost in IDC is

J
pr(t)Ej(t)

PS(1)

J
ZI,P(U(alL,-(t) +aym; (1)) (2)

2.1.2 The air chiller side
The energy consumed by the air chiller and drop
in air temperature from 7', to T, (T, > T,) can be deno-
(T, - T,)"
® " cop
the air ( expressed in Joules/(kg. K) unit), f the air
flow rate (expressed in m’/s unit), the air density
(expressed in kg/m’ unit) , and COP the coefficient of
performance representing the efficiency of the cooling

ted

, where ¢ is the heat capacity of

unit. Without loss of generality, it is usual to assume
COP = 1. In the machine room, the air chiller should
lower the air temperature from the room temperature
(T") to instant cooling air temperature at time slot
t(T°(t)). Hence, the energy consumption is

C(t) = cfp(T" =T (1)) (3)
The energy cost is
PC(t) = p(t) xcfp(T" -T(1)) (4)

Obviously, it is the sum of PS(¢) and PS(t) that

equals the total power cost of the data center.

2.2 Constraints
2.2.1

In consideration of requests in an application of

QoS constraint

sharing the same queue, a M/M/N queuing model is
applied to the near response time. The average queuing

1
m; () = L; (1)
where P, denotes the probability that the waiting queue

delay can be expressed as x P,,

is not empty. Without doubt, servers in a running data
center are nearly always busy, so P, = 1. For applica-
tion j, the mean service rate u, (expressed by request/
second) can be obtained via dividing the speed of the
CPUs (expressed by commands/second) by the mean

. s
number of commands for a request K;, i.e. , u = —.

Given a predetermined average delay upper bound bj
for application j, the QoS constraint can be calculated
as
L _p
mj(t),Uv _Lj(t> "

2.2.2 Temperature constraint

v (5)

At steady state, the temperature of serverj can be
controlled by the inlet cold air temperature T°(¢) and
the CPU energy consumption e;(¢) :

T (1) = T (1) + oe;(t) (6)
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where { is the heat exchange rate expressed in K - s/].
The processor and motherboard reliability of a server is
mainly influenced by temperature gradient and thermal
stress in a production data center. With respect to reli-
ability issue, the expected server temperature must be
maintained below a certain threshold 7. Plugging
Eq. (1) into Eq. (6) yields:

E{ru>+z@,22§+ag}srm,VJ<n

2.3 Problem formulation

After some alternations of Eq. (5) and inequation(7),
now define the EMIEP problem as follows

- 1 <
mmln}LiHPTE E{PS(t) + PC(1)} (8)
subject to;
5L
e —m(1) <0,Yj, ¢ (9)
i

™ -T(() a
aTam0)
<0,VYj, ¢+ (10)
Finally some bound constraints for the decision varia-
bles are added;
m, < m™
™<T <T
The EMIEP problem cannot be easily solved due

to the following reasons; 1) The unknown probability

E{L,(1) - (

distribution of L;(¢) and p(t) makes the expectation in
Eq. (8) and constraint (10) computationally trouble-
some; 2) Traditional methods to deal with dynamic op-
timization problems such as dynamic programming suf-
fers from the curse of dimensionality, i.e., the com-
putation complexity grows exponentially with problem
size. Therefore, a modern method will alternate the old
approach to approximately solve this problem.

3 A Lyapunov approach to solve EMIEP
problem

This section first relaxes constraint (10) and uses
the Lyapunov optimization theory to obtain an optimal
solution.

3.1 Relaxing the EMIEP problem

Constraint (10) can be relaxed into

T
lim supLZ E{Lj(l) — (w _ (Lz)mj(,;) }
Y la, a,
<0,VY;, (11)
The relaxation suggests that the expected server
temperature is occasionally beyond the temperature

bound without destroying reliability as long as the time-

averaged expected temperature is within the acceptable
range.

Replacing constraint (10) in the original problem
by constraint (11) leads to an relaxed version of

EMIEP. Constraint (11) can be further transformed

into:
1 &
lir?HiupTZ} Etm ()T (1) +{(a,Li(1)

+a,m (1)) —T"m(1)} <0 (12)

To satisfy constraint (12), EMIEP can be trans-

formed into a queue stability problem. Define virtual
queue Z,(¢) with update Eq. (13).

Z(t+1) = max%Zj(t) +m ()T (t) +(a,L(1)

Fam (D) - T™m(1),0] (13)

Then, if Z,(t) is mean rate stable, i. e.,

E{Z.(t
lim sup,. ., %)} = 0, constraint (12) is satis-
fied.

3.2 The objective function

The Lyapunov optimization framework subtly de-
signs a control algorithm that chooses actions for all ¢ to
yield a time average expectation of the objective func-
tion value close to optimal solution with the mean-sta-
ble virtual queue Z;(¢). The algorithm changes the
original problem into an alternative, minimizing the
time average of a cost function subject to queue stabili-
ty.

Let Z;(#) be a concatenated vector of all virtual
queues with update Eq. (13). Define the Lyapunov

function ;

uﬂmeiiamz (14)

Define A(Z(t) ) as the conditional Lyapunov drift
for slot t:

A(Z(1)) AE{L(Z(t+1)) ~L(Z(1)) | Z(1) |

(15)
where the expectation depends on the control policy
and random workload arrivals.

Instead of taking control actions to directly mini-
mize Eq. (8) , the Lyapunov optimization seeks to min-
imize a bound of the following drift-plus-penalty func-
tion

ACZ(1)) + VE{p(1) (E(t) +C(1)) | Z(1)) |

(16)
where V = 0 symbolizes an “importance weight” on
how much the algorithm emphasizes cost minimization.
In section 6, an algorithm minimizing Eq. (16) will
achieve a close-to-optimal solution while stabilizing
Z(t).

The drift-plus-penalty objective function Eq. (16)
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can be bounded by the following
A(Z(1)) + VE{p(t) (E(t) + C(2)) | Z(1)) |
J

<B+ ;Zj(t)E{ (m ()T (1)

+§(a1LJ‘(t> +a2mj(t)) - Tﬂax’”j(”) | Z(1)) |
+ VE{p(1) (E(t) + C(1)) 1 Z(1))} (17)
where B is a constant defined as B = m"™'T™ +

l(a, L™ + a,m™). The designed algorithm minimizes

the right-hand-side of Eq. (17).

3.3 Algorithm design
The objective function of problem Eq. (8) can be

rewritten as

J
mm;%UHwUﬂ”1W@UM+%@U)

J
-T"m,(1) ] + VZp(t) La,L,(t) +aym/t)

j=
+ofp(T" = T) ] (18)
The existing cross term of control variables
plagues the solution of the problem. However, fixing
L.(t) and p(t) can simplify the solution for m,(¢) by
creating a linear function. To see that, dropping the

constant terms in Eq. (18) yields
J

2 %Z](t)(m,<t)r +§a2m,‘(t) - Tmaxmj(t)>

T Wam ()] V(T (19)
Rearranging (19) vyields

J

3 m (01,0 (T + Za, -

V(DT (20)
If T is fixed, m;(t) can be solved analytically: if
then other-

™) + Vp(t)a,|

the coefficient of m;(t) is greater than 0,

1
H + L]»(t)
J

wise m; (1) to guarantee the delay con-

straint (9). The above analysis can be summarized as

Algorithm 1.

Algorithm 1  EMIEP: Choosing the best mjl.’?"(t) for the
Drift-Plus-Penalty Algorithm

ax

1: Determine the upper bound of m;(t) as m;"

Lo

J

\S]

: Calculate the minimum of m,(¢) : m]'-"i"(t) =
"

: Study the coefficient of m,;(t) :

16 Z,() (T + fay, = T™) + Vp(t)a, > O then

return m™" ()

. else

return m;
. end if

0 N AN L AW

The next step is to test all possible cooling air
temperatures to find optimal 7°. This can be done via
Algorithm 2.

For a fixed T°, first call Algorithm 1 and figure out
mf”'[ T°] (line 4) so as to minimize (20) for each ap-
plication.  Plug m]l-)e”'1 [T°] into server energy cost
Eq. (2) and calculate the total server energy cost.

b“[ T°] and T° into the first item of

(18) and obtain the simplified drift function. Having

Substitute m

computed cooling energy cost depending on Eq. (4) ,
the value of objective function can be obtained by
adding server energy cost to cooling energy cost (line
5). For all T7°, the sum of drift function and V multi-
plied by F" leads to the value of (20) (line 6). As
temperatures change from 10 to 25 by integers, the al-
gorithm chooses min7T* ( line 8 ), the minimization
makes the least values of (20) for all 7°. Once minT"
is determined, it is convenient to acquire the best num-
ber of servers, server energy cost and cooling energy
cost (line 11 and 12) , and the value of objective func-
tion at this time slot ¢z (line 10). Finally, Eq. (13) it-
erates and updates the virtual queue Z(¢). (linel3).

Algorithm 2 EMIEP: Minimizing the Drift-Plus-Penalty

Algorithm

1. Define:
interval ; Set of decision epoch
Temperature : Set of possible cooling air temperature.
Applications : Set of applications.
F*¥ . The value of object function
DPP[ T ] The value of Lyapunov Drift-plus-Penalty at T°
2. for all ¢ e interval do
3. forall 7" Lempemzure do
4. Call Alg. 1, acquire m (1) for all j

5. FY Zli:lp(T")(alL](T:) +a,m ™ (T°)) +
p(T) *L*f*pu""’ )

6: DPP[ 2 Z(T) (™ (T)T +
(r(u,L(7‘)+a2 S(T)) = T™m (T |+
Vx FY

7. end for

8: minT" « argmin, DPP[ T"]

9: mbest(t) <—m[ minT*]

10: minF* (1) <« F*¥[ minT"]

11; minServerprice(t) «— serverprice| minT" |

12 minCoolingprice(t) «— coolingprice[ minT" ]

13: Z(t + 1) «— max{Z,(1) + mbest(t) * T (1) +
(ay = Li(t) + ay, = mbest(t)) — T = mbest(1) 0!

14. end for
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4 Performance analysis

This section first shows that the minimum time-av-
eraged IDC energy cost can be achieved using a ran-
domized stationary control policy independent of the
virtual queue state Z (). Then, a performance bound
for objective function is derived.

Define E{p(t) (E"(t) + C"(t)) | as the expec-
ted energy cost in the interval [ 1,:-+,T] under control
policy 77, and e” as the minimum achievable E{p(t)
(E™(t) + C™(t))} over all possible 77. If problem
Eq. (8) is feasible, then for any § > 0, there is a poli-
cy 7 * which depends only on workload and power price
which satisfies

E{p(t)(E™ (t) +C" (1))} <e” +8

This result is a direct application of Theorem 4.5
in Ref. [9], which discovers that there is aqueue-in-
dependent randomized stationary yielding an energy
cost arbitrary close to the optimum as long as the prob-
lem is feasible. Next the performance bound is given.
Theorem 1  Suppose that E{L(Z(0))} < o. The
following results yield ;

1) The achievable total energy cost of the EMIEP
algorithm can be bounded by

lim sup - 3 E{p(0) (E(0) +C(1)] <

s

+e

<=

(21)

8
8

2) The virtual queue Z(t) is mean rate stable,
i.e.,

E{Z (1) o (22)

lim sup

T—eo T

According to the above theorems, the article con-
cludes the [ O(1/V), O(V) ] tradeoff, i. e., the en-
ergy cost can be pushed arbitrarily closed to the opti-
mum as V' — oo

5 Numerical evaluations

This section conducts extensive simulations to
evaluate the proposed EMIEP algorithm.

5.1 System configuration

All data used in research were accumulated from
four applications of Ordos Uni-Cloud Co. , Ltd. , after
the authors had spent a week on their Internet Data
Center (IDC). Because electricity in EMIEP relates to
two factors; server power expenditure and cooling sys-
tem, workload trace involved in server power contains
mean request arrival rate shown in Fig. 2 for interactive
web service at intervals per hour.

To analyze energy cost consumed in applications,
In the light of
Ref. [9], the algorithm acquires the heat capacity and
the density of the air as ¢ = 1005)/kg. K and p =
1. 205kg/m’ at 25°C. Without loss of generality, the

machine room 7% is set to 25°C.

S o
8 8

Workload (CPUS)
g

=}

service rate of single server y is normalized as 1 across
all applications. If the minimal and maximal power con-
sumption of a single server is 40W and 80W , parameters
in Eq. (1) can be set to @, =40 and @, =40. Suppose
that heat exchange rate is { =0.625K - s/]J, the air
flow rate is f =5m’/s, and the maximum allowable
server temperature is 7" = 60°C.

5.2 Result analysis

Based on the above set parameters, the perform-
ance of the EMIEP algorithm is investigated and com-
pared with a greedy policy, which is obtained by sol-
ving the following problem:

Time (h)

Fig.2 Workload trace involved in server power

minPS(t) + PC(t) (23)
subject to;

Lo

p T ,

O (1) =0, Vi

"
: L(t) .
T (t) "‘f(a1 rf(t) +a2)$ ™, Vj

Note that problem (23) greedily minimizes power
cost in current slot rather than the long term average
power cost.

5.2.1

Fig. 3 shows that dynamic programming price
(DPP) is also a random variable. At the initial state,

Total energy cost and delay
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its number of samples is not enough that the expecta-
tion of objective function is over-estimated, but as time
goes by, more samples will be obtained, which leads to
more accurate estimation.

11
10}
&
&
& S
0 F
-5 L L L L ' L L L
20 40 60 80 100 120 140 160
Time (h)
Fig.3 Value of drift-plus-penalty objective function

with V' = 10

Different vertical ordinates shown in Fig.4(a), 4
(b) and 4 (¢) individually denote total,

cooling energy costs V, the horizontal ordinate, controls

server and

the weight of Lyapunov drift and objective function.
The experiment also plots the performance of greedy
strategy in the figure,
4(b),

steps with the increase of V. In this way, the objective

as shown in Fig.4(a) and
the total and server energy costs descend in

function is efficiently optimized. Though the cooling
V =10’ and V

this situation has not af-

energy cost mildly increases at V = 10°
= 10" shown in Fig.4(c),
fected the general tendency of energy cost as V grows.
When V grows to V = 10", this EMIEP outperforms

greedy strategy.
3

1
n

Total power cost

(a) Total energy cost vs. V

3
z —&— EMIEP
g 2.54 —8— Greedy ||
g
a
5 2
2
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@ H = = = = &= &= ]
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(b) Server energy cost vs. V
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3 2
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L 19 e SR

W
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~
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10 11 12

(¢) Cooling energy cost vs. V

Fig.4 Energy cost vs V

The QoS (delay) for each application in Fig.7
discovers that the 10ms QoS requirement is met in this
EMIEP strategy. Fig.5 and Fig. 6 show the number of
servers allocated to each application with time and the
variation of drift-plus-penalty objective function, re-
spectively. It can be shown that this EMIEP can effec-
tively minimize the system power cost while ensuring
QoS requirement.

—_ —

(=1 w

(=1 (=3

(=] (=]
T T

500

Number of servers

Fig.5 Servers allocated to each application with V=10

_ 0.01 il J T
]

40 60 80 100 120 140 160
Time (h)

Fig.6 QoS (delay)

5.2.2 Cooling temperature and server temperature
Compared with Fig.4(c),
cooling cost in Fig.7 goes to different way.

the variation trend of
The case
explains the fact that the lower the temperature of cool-
ing air is set, the higher the cooling power consumption
and cost.

8] 35
- w

N
w

Cooling Temperature ("C))

4 6 8 10
vV
Fig.7 Cooling air temperature vs. V

Since energy consumption directly influences serv-
er temperature, the server temperatures as shown in
Fig. 8 from four applications constantly keep heading

70

=
by

60

Server temperature (°C)

S 6 7 8 9 10 11 12

Fig.8 Server temperature vs. V
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up but occasionally fluctuate at V = 10° and V = 10" in
application 3 and 4. Raising Vto 10" slightly increas-
ing the average temperature , significant power cost sav-
ings can be obtained.

6 Conclusion

This work concentrates on greening the data center
by minimizing time-averaged expected energy cost sub-
ject to QoS and average temperature constraints.

Since the workload distribution cannot be obtained
in advance, it is challenging to design a dynamic con-
trol algorithm to achieve this goal.

To address this opinion, the algorithm leverage
the Lyapunov Optimization technique and develop an
algorithm to approximately solve the Expense Minimiza-
tion of IDC’ s Electricity Power problem. By evaluating
the simulation experiment, the algorithm can be
pushed arbitrarily close to optimal solution as control
parameter V is raised. Based on real workload trace
from Ordos Uni-Cloud Technology Co. , Ltd. to simu-
late the proposed algorithm, numerical results illustrate
that the algorithm can practically reduce total energy
cost while guaranteeing QoS and temperature con-

straints.
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