HIGH TECHNOLOGY LETTERSIVol.22 No.2|June 2016 | pp. 192 ~ 198

doi;10.3772/j. issn. 1006-6748.2016.02.011

Abnormal activity detection for surveillance video synopsis®

Zhu Xiaobin (#LIEEK)@" | Wang Qian™ , Li Haisheng” , Guo Xiaoxia™ , Xi Yan™ , Shen Yang ™

( " School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China)

(™ Academy of Broadcasting Science, SAPPRFT, Beijing 100866, P. R. China)

Abstract

Video synopsis is an effective and innovative way to produce short video abstraction for huge
video archives, while keeping the dynamic characteristic of activities in the original video. Abnormal
activity , as the critical event, is always the main concern in video surveillance context. However, in
traditional video synopsis, all the normal and abnormal activities are condensed together equally,
which can make the synopsis video confused and worthless. In addition, the traditional video synop-
sis methods always neglect redundancy in the content domain. To solve the above-mentioned issues,
a novel video synopsis method is proposed based on abnormal activity detection and key observation
selection. In the proposed algorithm, activities are classified into normal and abnormal ones based
on the sparse reconstruction cost from an atomically learned activity dictionary. And key observation
selection using the minimum description length principle is conducted for eliminating content redun-
dancy in normal activity. Experiments conducted in publicly available datasets demonstrate that the

proposed approach can effectively generate satisfying synopsis videos.

Key words: abnormal activity detection, key observation selection, sparse coding, minimum

description length (MDL) , video synopsis

0 Introduction

Security applications have great demands on effi-
cient technologies for fast video browsing, retrieval or
analysis, facing endlessly produced surveillance vide-
o0s. Therefore, how to obtain short and comprehensive
video abstractions becomes an urgent task in research
domain. Video synopsis is an effective method, which
makes the abstraction video greatly shorter than the o-
riginal one by displaying the activities from different
periods simultaneously.

Video synopsis can eliminate redundancy in the
spatial-temporal domain, and generate short video ab-
straction. However, the existing synopsis methods'' '
still have the following limitations; They always tend to
summarize all types of activities from input videos. In
video surveillance context, people mainly concern with
particular activities, especially abnormal activities.
The traditional synopsis video will include lots of activi-
ties people are not really interested in; They always
concentrate on eliminating redundancy in the spatial-

temporal domain, while neglecting the redundancy in
the content domain. Too many observations for activi-
ties can make the synopsis videos chaotic and less un-
derstandable.

To address the above issues, a novel video synop-
sis approach is proposed based on abnormal activity de-
tection and key observation selection. In the proposed
algorithm, based on sparse coding framework, activi-
ties are classified into two types, namely abnormal type
and normal type, based on which two synopsis videos
are generated separately. Synopsis with abnormal activ-
ities is usually the main concern in surveillance con-
text, while synopsis with normal activities is a comple-
mentary video. Because adjacent observations in an ac-
tivity are always similar in action and appearance, thus
key observation selection is adopted to eliminate con-
tent redundancy in synopsis video for normal activities.
Section 1 overviews the related works. Section 2 elabo-
rates the methodology of this work. The experiments
are given in Section 3, and this study is concluded in

Section 4.
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1 Related work

Video abstraction can be broadly divided into
three categories, namely videosummarization, video
skimming, and video synopsis. Video summarization
techniques try to provide a summary by creating shorter
video remaining descriptivesections of the original vide-
o. Typically, these techniques adopt static representa-

) Although summarization

tions such as key-frames
based on key-frame could greatly compress theoriginal
video, it loses not only the dynamic nature of video but
also meaningful video contents.

" aims to extract informative

Video skimming'*”
video segments from the original video to obtain a con-
densed summary video. Ref.[5] adopted long-term
and short-term audiovisual tempo analyses to detect
valuable substories of a video and combined them for
video skimming. The skimming video is generated
based on the selected scene periods. Although, video
skimming method can generate relatively more coherent
and expressive summary video than those key-frame
based ones. However, people will tend to spend large
amounts of time browsing video segments with little in-
formation.

Video synopsis methods break the previous frame-
work through rearranging spatial-temporal location of
foreground objects to generate a new efficient summary
video, while keeping the dynamic nature of the original

video! "¢,

In Ref. [1], activities were represented
by space-time tubes. Then, energy function comprised
of collision cost, activity cost and temporal consistency
cost, etc., is minimized using annealing, MRF, or
greedy optimization method, yielding an abbreviated
synopsis video for fast browsing. Ref. [ 6 | formulated
the synopsis video generation problem as a maximum
posterior probability (MAP) estimation problem, where
video objects are chronologically rearranged in realtime
without pre-computing the complete trajectory of activi-
ties. In Ref. [9], Feng, et al. adopted an online con-
tent-aware approach to achieve efficient video conden-
sation. In the above mentioned methods, all the activi-
ties of the input video are equally treated and summa-
rized together. The generated synopsis video tends to
comprise lots of activities people are not really interest-
ed in. In addition, great redundancy in the content do-
main is always neglected in the above video synopsis
methods, which leads to collisions, and negative impac-
tion on subjective effect of video synopsis. In
Ref. [10], space-time worms were correlated with an
user-specified query to identify actions of interest,

which were then condensed by optimizing their tempo-

ral shift, allowing simultaneous display of multiple in-
stances of relevant activity. Motivated by the works in
Ref. [10] and Ref. [11], a novel framework is pro-
posed for video synopsis, which can overcome the
above limitations of the current methods.

2 The proposed algorithm

2.1 Framework
The proposed framework is shown in Fig. 1. Firstly,
background subtraction followed by a graph-based

tracking''*"*/

is adopted to extract moving objectactivi-
ties. Then, sparse reconstruction cost is adopted to
classify normal and abnormal activities based on dense
trajectory. For normal activities, key observation selec-
tion is used to eliminate content redundancy with the
minimum description length ( MDL) principle. Final-
ly, two synopsis videos are generated for normal and

abnormal activities, respectively.

Normal | Key observation

Activity Abnormal| activity selection
\ i =P activity
getEeen detection

A
Abfpormal i output
Video |

Dense trajectory

Input video ;
extraction

A 4

activity | synopsis

Fig.1 The proposed framework

2.2 Abnormal activity detection

After the background/foreground segmentation, a
multiple hypothesis tracker is used to track blobs'"’.
Then, foreground blobs are grouped into targets by em-
ploying similar techniques as in Ref. [16]. Each ac-
tivity is represented by a sequence of object masks in
those frames. The space-time sequences of an object is
deemed as a tube, and the central point of object is
taken as motion trajectory. Motion trajectories of ob-
jects are widely used in abnormal activity detection.
Sparse coding framework is suitable for model high-di-
mensional samples. Normal samples tend to generate
sparse reconstruction coefficients with a small recon-
struction cost, while abnormal one is dissimilar to any
of the normal basis, thus generates a dense representa-
tion with a large reconstruction cost. Recent works''"
showed the power of sparse coding in detecting abnor-
mal activities (events). In the proposed algorithm,
abnormal activity is conducted based on the sparse cod-
ing framework.

2.2.1
In Ref. [18], typical trajectories were modelled

Feature extraction

with hierarchical clustering method for identifying ab-
normal behavior. One limitation of trajectory-based ap-
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proaches is that the detection performance greatly relies
on the accuracy of foreground object extraction and
tracking. The other is that single trajectory cannot well
describe the overall motion of the corresponding object

[19

across the scene' ', Dense trajectory is extensively ap-

plied to a variety of tasks, e. g., action recogni-

0 and abnormal event detection™®’ | etc. Tt is

tion
capable of well describing object activities, even in
complex and crowded scenes. So, dense trajectories
are extracted using particle advection'”' for abnormal
activity detection in the proposed algorithm. In
Fig.2(a), the dotted lines denote the dense trajecto-
ries belonging to one object ( encircled in the tube)

across the scene.

t t+l cecv e pEpn t+n+1
(a) Derajectories extraction

(b) Feature representation

To describe the motion of an object, the multi-
scale histogram of optical flow ( MHOF) is adopted as
the feature descriptor'”', as shown in Fig.2(b). The
noise motion is firstly filtered with extremely large am-
plitude. MHOF has K =64 bins including four scales,
for more precisely preserve motion direction information
and motion energy information. The first scale uses the
first 16 bins to denote 16 directions with motion magni-
tude r < T,, the second scale uses the next 16 bins
with motion magnitude T, < r < T,, the third scale

uses the next 16 with motion magnitude 7, < r < T, ,

and the fourth scale uses the final 16 with motion mag-
nitude T < r.

(c) Region division

Fig.2 The proposedabnormal activity detection algorithm

2.2.2 Dictionary learning

Because the local trajectory may be abnormal,
while global trajectory is normal, as shown in
Fig.2(c¢), the video is splited into several sub-regions
and extract MHOF features in each region to train dic-

[23,24]

tiona for sparsely representing each feature.
ry p y rep g

Given a training set of feature pool as B =[b,,b,, -,
b,] € R™*", where each column vector b, € R" de-
notes a feature vector with m-dimension and N denotes
the total number of feature vectors. To find a set of ba-
sis D (it can be initialized by k-means) and a matrix
of mixing coefficients W, B can be reconstructed by
the weighted sum of computed basis D well. More for-

mally, this problem can be formulated as
B-DW| +A| W], (1)

The efficient sparse coding algorithm is utilized as

min,

in Ref. [23]. The objective function is not convex in
terms of all the variables jointly. Therefore, it is unre-
alistic to expect an algorithm to easily find the global
optimal solution. An alternating optimization method is
adopted to solve it.
2.2.3 Sparse reconstruction cost

With the dictionary dat hand, a test sample y can
be classified as normal activity or not. As mentioned
above, the feature of a normal sample can be construc-
ted by only a few number of bases in the dictionary D,

while an abnormal sample cannot. So, the sparse rep-
resentation problem can be formulated as

w'o=min, |y -Dw |} +A]w], (2)
This can be solved by the gradient based method
described in Ref. [ 23 ].

W during dictionary learning. Here, [, -norm is adopted

The [, , -norm is adopted for

for w. The [, | -norm is a general version of the [, -
norm in nature. Since if W is a one dimension vector,
then |w|,, = || w]|,. After that, the optimal re-
construction weight vector w”* is got, the sparsity re-
construction cost (SRC) """’ can be computed as

S=ly-Dw L +Alw |, (3)
And the test sample y will be detected as an abnormal
activity , if the following criterion is satisfied;

S>¢ (4)
where g is a parameter that is set by cross-validation. It
determines the sensitivity of classifying abnormal activi-
ty.

2.3 Key observation selection

Video synopsis method''' provides an effective
way for fast browsing activities by spatial-temporal rear-
ranging them into a greatly condensed video. In typical
scenarios, the activities always consist of numerous ob-
servations, resulting in collision and degradation of
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subjective effect in synopsis video. In addition, adja-
cent observations may be very similar in action and ap-
pearance. In light of these factors, a few representative
observations are used, namely key observations, to de-
pict the original behavior of normal behavior, which
can greatly eliminate the redundancy in the content do-
main, and promote the efficiency of video synopsis. In
Ref. [11], k-means clustering method was adopted to
select a pre-defined number of key actions. However,
the number of key actions can not be fixed for different
objects, even in the same scenario.

Different from Ref. [25], the key observations is
extracted from every object instead of input video. The
observations which have significant action are selected
as the key ones, according to the proposed criteria. In
the proposed algorithm, the difference between the
sampled activities and the original activities ( represen-
tativeness ) is tried, while to is used minimized as
small number of observations as possible ( compressi-
bility) , as shown in Fig. 3 (the points denote key ob-
servations, and the dotted line denotes the sampled
trajectory ). However, the representativeness and the
compressibility are contradictory to each other. For ex-
ample, if all the observations of the trajectory are cho-
sen as the key ones, then the represent ativeness is
maximized. In contrast, if only the starting and ending
observations of the trajectory are chosen as the key
ones, the representativeness is minimized, but the
compressibility is maximized. Take the representative-
ness and compressibility into consideration, a data-
driven method is adopted to select key observations by
transforming it into an MDL optimization problem"*’ for
exploring an optimal selection.

L(S) = -@;% (5)
L(DIS) =
> en(0,0,.) - len(0/00,)))
—log : R
(6)
where R, = 3 1en(0,0,,,) ~len(0,0,), N, is

the number of key observations, N is the total number
of observations belonging to the trajectory, O, denotes
the ith observation, O’; denotes the ith selected key ob-
servation. The distance function len denotes the length
of a line segment of two observations, for considering

the speed factor. R, denotes the minimum representa-

tiveness, maximum different the sampled trajectory and
original trajectory, when only start and end observa-

is used to normalize

max

tions are selected as key ones. R
representativeness between 0 to 1. Fig. 3 is an example
to demonstrate the function of key observation selec-
tion. Then, L(S) = - log (5/8) can be got by
Eq. (5), and L(D | S) =- log((len(0,0,) +
len(0,0,) =1len(0,0,) +1len(0;04) +len( 0,0,) +
len( 0,04) —len(0504))/R,..) by Eq. (6).

As mentioned above, it is needed to search the
optimal key observation selection scheme that minimi-
zes the DL. However, it is an NP-hard problem.
Therefore, an approximate method is adopted by choo-
sing a local optimum. As shown in Fig.4, if
DL(0,0,,; < DL(0,0,,,), then O, , is deemed as
the proceeded key observation, proceed with the former
key observation Ok. The detailed algorithm is summa-
rized in Algorithm 1.

Fig.3 An example of key observation selection

The description length ( DL) in the proposed al-
gorithm is computed as: L(D,S) = L(D 1| S) +
L(S), where S is the learned key observation selection
solution, and D is the input trajectory ( consisted of ob-
servations). L(D | S) is the number of bits required
for encoding the data with the help of the key observa-
tion selection, while L(S) stands for that to encode the
selection solution. The optimal key observation selec-
tion solution S is the one that minimizes L(D, S)
(MDL) , namely MDL. L(S) and L(D | S) is compu-

ted as follows:

Fig.4 An example of the approximate algorithm

2.4 Synopsis video generation

Video synopsis can be seen as an energy minimi-
zation optimization problem, and the energy includes
the cost of objects collision, the cost of objects time in-
consistency, the cost of objects lost, and so on. Fol-
lowing Ref. [1], the concepts of collision E,, time
consistency cost E,, and compression rate cost E,; are
introduced for generating lossless synopsis video in the
proposed algorithm. The synopsis of abnormal activities
and normal activities are conducted respectively using
the same energy function, generating two videos for fast
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browsing. The energy function can be formulated as

follows :
E = argmin,E(M) (7)
EOD = %, (ak (b, b,) + BE.(b,.b")
+E,(b,,b",)) (8)

where B is the whole tube set, b, and b’, are two tubes

mapped into synopsis video. E,(b,,b’,) is the time in-

no

consistency cost, for preserving the chronological order
of objects. E_ (b

for the spatial-temporal overlaps among objects. E, (b

b',) is the collision cost, penalizing

no

no

b',) is the compression rate cost, penalizing for the
long synopsis video. « and B are two empirical parame-
ters set by the user according to their relative impor-
tance. Reducing the weights of the collision cost,
e.g., will result in a dense video where objects may
overlap. Increasing this weight will result in a sparse
video where objects do not overlap and less activity is
presented. The minimization of energy function is ad-
dressed by simulated annealing. After achieving the
optimal arrangement of tube set, the tubes are stitched
into the background image using poisson editing to gen-
erate final synopsis video.

Algorithm 1. Selecting key observations in trajectory based
on MDL.

Input: N, the number of observations

Output ; trajectory O’ consist of key observations

Data: {0O,, O,,,,-, O,}
0,1 =0,;
p =2
for {k=1; k<N-1; k+ + {do
j=1
for {;;}do
if DL(0,0,,; <DL(0,0,,;,,)) then
0,,, =g, Pty
continue ;
else
I+
end if
end for
k= k+j—1;

end for

3 Experimental evaluation

In order to evaluate the performance of the pro-
posed abnormal activity detection based surveillance
video synopsis method, experiments are conducted on
three real world testing videos, captured by the equip-
ment in outdoor scenes. The first dataset (D1) targets

which consists of 31,530
frames, and the representative images are shown in
Fig.5(a). The second dataset (D2) targets at vehicle
surveillance of street scenario,

at pedestrian activity,

which consists of
43,685 frames, and the representative images are
shown in Fig.5(b). The third dataset (D3) targets at
vehicle surveillance of street scenario, which consists
of 39,556 frames, and the representative images are
shown in Fig.5(c). All video are resized to resolution
352 x288, 15 FPS. The first 8minutes are selected for

training dictionary.

(@) D1 (b) D2 (c) D3

Fig.5 The representative images

To demonstrate the benefit of key observation se-
lection in video synopsis, the proposed synopsis meth-
od (denoted as Proposed) is compared with traditional
method without abnormal activity detection and key ob-
servation selection''’ (denoted as Method 1), cluster-
based synopsisui (denoted as Method 2), and another
key observation selection based synopsis method with-
out abnormal detection'””’ ( denoted as Method 3). The
detailed results are displayed in Table 1, Table 2 and
Table 3, corresponding to D1, D2 and D3 respective-
ly. From Table 1, it can be concluded that our method
obtains 4. 7% compression rate, while causing 3,784
energy loss. Method 1 obtains 7.4% compression rate,
while causing 5,008 energy loss. Method 2 obtains
6.7% compression rate, while causing 4,445 energy
loss. And Method 3 obtains 5.9% compression rate,
while causing 4,281 energy loss. From Table 2, it can
be concluded that the proposed method obtains 2.3%
compression rate, while causing 2,841 energy loss.
Method 1 obtains 7.2% compression rate, while cau-
sing 3,641 energy loss. Method 2 obtains 6. 8% com-
pression rate, while causing 3,577 energy loss. And
Method 3 obtains 6.0% compression rate, while cau-
sing 3,302 energy loss. From Table 3, it can be con-
clude that the proposed method obtains 11.5% com-
pression rate, while causing 5,682 energy loss. Meth-
od 1 obtains 15.3% compression rate, while causing
7,752 energy loss. Method 2 obtains 14.9% compres-
sion rate, while causing 7,172 energy loss. And Meth-
od 3 obtains 13.8% compression rate, while causing
6,465 energy loss. The energy loss are mainly caused
by object collision and chronological mis-order, which
can heavily degrade the quality of synopsis video. Ob-
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viously, the proposed method achieves lower energy
loss, while preserving a high compression rate.

Table 1  Detailed lost information in synopsis for Dataset 1
Energy lost Frame number

Dataset 1 . .

E, E, Original ~ Synopsis
The

proposed 575 3,209 3,1530 1,476

method

Method 1 978 4,030 3,1530 2,328

Method 2 786 3,659 3,1530 2,134

Method 3 698 3,583 3,1530 1,876

Table 2 Detailed lost information in synopsis for Dataset 2
Energy lost Frame number

Dataset 2

E, E, Original ~ Synopsis

The

proposed 378 2,463 43,685 2,267
method
Method 1 476 3,165 43,685 3,164
Method 2 501 3,076 43,685 2,987
Method 3 426 2,876 43,685 2,640

Table 3  Detailed lost information in synopsis for Dataset 3
Energy lost Frame number

Dataset 3

E, E, Original  Synopsis

The

proposed 430 5,252 39,556 4,548
method
Method 1 487 7,265 39,556 6,041
Method 2 476 6,696 39,556 5,879
Method 3 445 6,020 39,556 5,465

4 Conclusion

In this work, a novel video synopsis is proposed
based on abnormal activity detection and key observa-
tion selection. In the proposed algorithm, the activities
are classified into normal and abnormal ones based on
sparse coding framework. For normal activities, key
observation selection using MDL principle is conducted
for eliminating content redundancy. Experimental re-
sults on publicly available datasets demonstrate the ef-
fectiveness of the proposed approach.
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