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Abstract

In the quotient space theory of granular computing, the universe structure is assumed to be a to-
pology, therefore, its application is still limited. In this study, based on the quotient space model,
the universe structure is assumed as an algebra instead of a topology. As to obtain the algebraic quo-
tient operator, the granulation must be uniquely determined by a congruence relation, and all the
congruence relations form a complete semi-order lattice, which is the theoretical basis of granulari-
ties’ completeness. When the given equivalence relation is not a congruence relation, it defines the
concepts of upper quotient and lower quotient, and discusses some of their properties which demon-
strate that falsity preserving principle and truth preserving principle are still valid. Finally, it pres-
ents the algorithms and example of upper quotient and lower quotient. The work extends the quotient
space theory from structure, and provides theoretical basis for the combination of the quotient space

theory and the algebra theory.
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0 Introduction

As an age-old concept first proposed in Ref. [ 1],
granular computing attempts to establish a formal theory
to simulate human intelligence. It is a superset of fuzzy
set, interval analysis, rough set, quotient space, etc. ,
and its goal is to establish general theories and methods

241 The unified frame-

of solving granular problems'
work of granular computing has not been formed so far,
and scholars at home and abroad have respectively es-
tablished their own granular computing models from

different views, which are systematically described in
5-17]

literatures"

The quotient space theory is a main and most im-
portant granular computing model proposed in
Ref. [ 18], which believes that people can observe and
analyze a problem in different granularities by human
intelligence, and a granularity coincides exactly with a
partition in mathematics, so it uses an equivalence re-
lation ( corresponding to a partition ) to describe a

problem’ s granularity'™®'. In the quotient space theo-
ry, a problem is described as a tuple (X, f,T) , name-

ly original space, where X is the set of the discussing

objects, namely the universe, fis the attribute function
of X, and T'is the structure of X, namely universe struc-
ture or the interrelation of elements. Let R be an equiv-
alence relation on (X, f,T), a quotient set [ X]| =
X/R of X will be got then corresponding tuple ([ X],
[f],[T]) is called a quotient space of (X, f,T). The
core of the quotient space theory is to get different
eranularities’ descriptions and properties of universe,
function and structure, and to study their interrelation
and interconversion. There are two basic and very im-
portant conclusions in the quotient space theory: All
the different granularities form a complete semi-order
lattice, which provides theoretical basis for transforma-
tion, decomposition and composition among different
granularities. The granularities’ transformation keeps
important characteristics—falsity preserving principle
and truth preserving principle, which can greatly in-
crease problem solving speed >'*"%".

A significant difference from other granular com-
puting models is that the quotient space theory has in-
troduced the universe structure, which is more power-
ful to describe and solve problems. When Zhang, et
al. proposed the quotient space theory, they assumed
that the universe structure was a topology, and did
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much corresponding research, and successfully applied
the model to problems solving of motion planning, tem-

81 In fact, algebra is a quite im-

poral planning, etc.
portant mathematical structure such as linear space,
group, ring, field and lattice, and is widely used not
only in mathematical fields like theories of number and
category but also in other fields such as atomic phys-
ics, system engineering. In computer and information
science, algebra has become a basic tool for scientific
11,20,21]

and technical personnels’ . Wang, et al. devel-
op the granular algebra theory, by which large-scale
granular systems with complex architectures and func-
tions can be systematically designed and ana-
lyzed ™. Then, if the universe structure becomes an
algebra instead of a topology, there is a problem that
whether the two basic conclusions are still valid. That
is to say, whether there still exists the completeness of
all granularities and the characteristics preserving in
eranularities’ transformation.

In this study, it is supposed that the universe
structure is an algebra, the concepts of congruence clo-
sure, upper quotient and lower quotient are introduced
and then the completeness of all granularities, the
characteristics preserving of granularities’ transforma-
tion, properties of upper/lower quotient, etc are dem-
onstrated. The paper is organized as follows: Section 1
presents the concepts of congruence relation and con-
gruence closure, and discusses their properties. Sec-
tion 2 defines quotient operator, discusses the existing
condition of quotient operator, and demonstrates that
all the congruence relations form a complete semi-order
lattice. Section 3 defines upper quotient and lower
quotient, and discusses some of their important proper-
ties. Section 4 gives out the algorithm of upper/lower
quotient. Conclusions are given in Section 5.

1 Congruence relation and congruence clo-
sure

Congruence relation and its properties are the the-
oretical basis of this work, and the concept of closure
is widely used in mathematics. In this study, in order
to discuss the existing condition of quotient operator
and the existence of upper/lower quotient more easily
in the viewpoint of relation, the concept of congruence
closure is especially introduced. This section mainly
focuses on the definitions and properties of congruence
relation and congruence closure.

Definition 1 Let (X, o) be an algebra, where X
is a universe, o is a binary operator, a,b,c € X, and
R be an equivalence relation on (X, o). Then [a] is
defined as a partition block of R including a. If R re-

mains replaceable property under o, then R is defined
as a congruence relation of o on (X, o), and C(R) is
defined as all the congruence relations of oon (X, o).
Here the replaceable property means, if [a] = [b],
then for V¢ e X, there exists [ac ¢] = [boc],[co
al =[cob].

In an algebraic system, if there is more than one
operator, it only needs to let each operator remain a re-
placeable property.

According to the definition of congruence relation
and related knowledge, the following two conclu-

. 21
SlOl’lSL ]

can be easily got. Proof is omitted.

Theorem 1 Let R be an equivalence relation on
algebra (X, o) and Ya,b,c,d € X. Then R is a con-
gruence relation if and only if [a] = [b],[c] = [d]
—[aoc] =[bod].

Lemma 1 On algebra (X, o), universal equiva-
lence relation £ and identity equivalence relation / must
be a congruence relation.

Let N be all the equivalence relations on algebra

(X,o), and set {R_}

al a

C N, from the properties of
equivalence relation, the following is got; 1) N R, €
N, that is, the intersection of finite equivalence rela-
tions is still an equivalence relation. 2) ¢( U R,)
N, that is, the transitive closure of the union of finite
equivalence relations is still an equivalence relation.
However, there exists a problem whether congruence

relation also has the above properties.

Theorem 2 Let {R, |, C C (M) be a non emp-
ty set of congruence relations on algebra (X, o), then
N, R, € C(N), which means, the intersection of fi-
nite congruence relations is still a congruence relation.

Proof; Let R* =N_R,. Vx e X, [x];-
= ﬂa[x]Ra is proved first. Then, for Yy e [x],.,
(x,y) e R", thus Ya, (x,y) € R, and so y
5 ﬂa[x]Ra. On the other hand, for Yy e ﬂa[x]Ra ,
Ya,y e [x]; , thus Va,(x,y) € R,, that is, («,
y) € R" ory € [x]4.. Therefore, Yx € X, [x],-
=N, [«] Ry

Then it is proved R is a congruence relation.
Clearly Va,R, 2 R™, so [x]Ra 2 [x]z.. Now let
lalge = [blge, [c]ge = [d]z., then for Va,
[a]Ra = [b]Ru, [c],{u = [d]Ra. And it is also known
R, is a congruence relation and [x],. = N [«] ks SO
lacc]z =N la° c]Rﬂ =N,[bo d]Rﬂ =[bod]g..
Therefore, R* is a congruence relation. Based on the
above analysis, the theorem has been proved.

Theorem 2 is proved by Theorem 1. In the follow-
ing Theorem 3 will be proved by Definition 1, Previ-
ously Lemma 2 will be introduced, which shows that
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element’ s transitivity is also replaceable under operator
o. Lemma 2 can be easily proved by the definition of
equivalence relation, and its proof is omitted.

Lemma 2 Let R be an equivalence relation of
set X, a,b,c € Xand (a,c), (c,b) € R. Then for
Vx e X,if (xea,xoc) e R, (xoc,x0b) e R, (a
ox,cox) € R, (cox,box) € R, there exists (x o
a,x°b) e R, (aox,box) e R.

Theorem 3 Let {R, |, € C(R) be a non empty
set of congruence relations on algebra (X, o), then
i(UR,) € C(R), which means, the transitive clo-
sure of the union of finite congruence relations is still a
congruence relation.

Proof:For Vx,,x, € t(U,R,), t(U_R,) is an
transitive closure of UaRa , SO two cases exist;

(1) (x;,%,) € U,R,. In this case, IR, €
where (x,,x,) € R, .ForR, e C(N), so
Ve X, (xox,,002,),(x,ox0,0002) € R, C
t(UR,).

(2) (%,x,) ¢UR,, but (x,x,) €
t(U,R,). In this case, by the definition of transitive
closure, 9y, =%, y,,"*, v, = x, € X, where (y,,
Yiu) e UR,,1 =12, m-1. Sofor Vi, AR, e
[R,f,,where Vx e X, (20 y,x0 5,.,,),(y,0%, ¥
ox) e t(U,R,). By Lemma2, Vx € X, (x0 x,,x
°%,),(x,0x,x,0%) € t( U,R,). Based on the above

analysis, t( U_R,) is a congruence relation.

(R,

al a’d

The definition and some important properties of
congruence closure are given below.

Definition 2 Let R be an equivalence relation on
algebra (X, o), if there exists a congruence relation
c¢(R) 2 R, and for any congruence relation R' 2 R,
there exists c(R) C R’, then c(R) is defined as a con-
gruence closure of R.

To sum up in a word, the congruence closure of
equivalence relation R is exactly the smallest one of the
congruence relations which include R. Some important
properties of the congruence closure is given below.
Just as every binary relation has its equivalence clo-
sure, every equivalence relation also has its congru-
ence closure, the following Lemma 3 shows the conclu-
sion.

Lemma 3 Every equivalence relation on algebra
(X, o) has its congruence closure

Proof; Let R be an equivalence relation on algebra
(X,9), {R,}|, be all the congruence relations inclu-
ding R on algebra (X, ), and letR* = N _R,. Clearly
universal equivalence relation £ 2 R, and E is a con-
gruence relation, thus {R_ |, # @. Meanwhile, for
VYa, R" CR,,soifc(R) = R" is wanted, it is only

needed to prove R” is a congruence relation. By Theo-

rem 2. 2, R" is a congruence relation. Therefore,
c(R) =R".

By the definition of congruence closure and Lem-
ma 3 Lemma 4 can be got easily, proof is omitted.

Lemma 4 Let R be an equivalence relation on
algebra (X, o), then ¢c(R) = Npcp or R

Theorem 4 Let R be an equivalence relation on
algebra (X, o), R is a congruence relation if and only
if¢(R) =R

Proof: If c((R) = R, obviously R is a congruence
relation. On the other hand, if R is a congruence rela-
tion, and {R_ |, are all the congruence relations inclu-
ding R on algebra (X, o), then R € {R,}|,, thus R
2N,R, = ¢(R). And by Definition 2 R C ¢(R),
therefore c(R) = R.

Theorem 5 Let R, ,R, be equivalence relations
on algebra (X,0),ifR, ©R,, thenc(R,) C c(R,).

Proof: R, € R,, and by definition 2 R, C ¢(R,) ,
thus, R, € ¢(R,). Clearlyc(R,) is a congruence rela-
tion, so by the minimality of congruence closure’ s def-
inition, there exists ¢c(R,) C c¢(R,).

2 Quotinet operator and completeness of
granularities

In the quotient space model (X, f, T), it is as-
sumed the universe structure is an algebra instead of a
topology. Although an algebra may include more than
one operator among the universe, here it is assumed
there is only one binary operator o. And for simplicity,
the attribute function f'is not considered. Therefore, an
original question can be simply described as an algebra
(X, ), where X is the universe, and o is a binary op-
erator.

By the above knowledge in Section 1, the existing
condition of quotient operator can be discussed much
easier. An equivalence relation on algebra (X, o ) mat-
ches one partition of X, and from the viewpoint of gran-
ular computing it matches a granularity. Then there ex-
ists a problem whether we can deduce a new algebraic
structure on new granularity X/R, that is, whether an
algebraic operator o which keeps new algebra (X/R,
o ") homomorphic to original algebra (X, o) can be
defined in Ref. [21]. The core requirement of granular
computing is to get the new granularity in the case of
keeping new and original structure homomorphic, be-
cause firstly it can greatly reduce the problem scale,
and secondly it makes the new structure inherit some
important properties of the original structure and is
helpful to the computing and reasoning work in the new
structure. So, it is key to research the existing condi-
tions of quotient operator and algebraic quotient space.
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Definition 3 Let R be an equivalence relation on
algebra (X, <), and p:X— X/R be a natural mapping.
On quotient space X/R, if there exists an operator o
which keeps p a homomorphic mapping, then o' is de-
fined as a quotient operator of X/R. Here homomorphic
mapping p means, for Vx, y € X, p(xoy) =p(x) o
'p(y).

In Definition 3, there is an one-to-one correspon-
dence between quotient operator o' and algebraic quo-
tient space (X/R, o "), that is, there exists a quotient
operator o' if and only if there exists an algebraic quo-
tient space (X/R, - ).

Theorem 6 Let R be an equivalence relation on
algebra (X, o), there exists quotient operator o' on
X/R if and only if c(R) = R.

Proof ; By Theorem 4, the conclusion of Theorem 6
means, there exists quotient operator o' on X/R if and
only if R is a congruence relation. Now proof begins.
On the one hand, let R be a congruence relation, then
a quotient operator o can be defined on X/R, where
Vx,y e X,[x] o '[y] = [xo y]. The definition is
well defined, because: R is a congruence relation, and
let [x,] =[x, ],[y,] =[y], thus[x,09,] =[x,
oyyl,solw Jo [y ] =laey ] =[a00,] =1[x]
o '[y,], and p is a homomorphic mapping, therefore o
is a quotient operator. On the other hand, let Vx,y,
w,z € X,[x] =[y],[w] = [z], and o be a quo-
tient operator on X/R. It is also known p is a homomor-
phic mapping, so [xo w] =p(xew) =p(x)e 'p(w)
=[x]o'[w] =[y]o'[z] =[50 z], therefore, R
is a congruence relation. Based on the above analysis,
the theorem has been proved.

In the quotient space theory, all the equivalence
relations form a complete semi-order lattice. In Theo-
rem 6, the existing condition of quotient operator is
that R is a congruence relation, in other words, in the
quotient space model based on the algebraic structure a
granularity is solely determined by a congruence rela-
tion. Then, there exists a problem whether all congru-
ence relations form a complete semi-order lattice. Be-
fore discussing it, the partial order of a lattice is first
defined in the following.

Definition 4 Let R, ,R, be equivalence relations
of set X. If R, € R,, then a partial order R, <R, is de-
fined, and R, is called smaller than R,.

Lemma 5"
tions on set X, then under the partial order

Let N be all the equivalence rela-

” ”

<" in
Definition 4, (N, <) is a complete semi-order lat-
tice.

In the quotient space theory, an equivalence rela-
tion is used to describe a granularity. Lemma 5 shows
the interrelation of different granularities in quotient

space theory, it is the basic and most important theo-
rem, and it provides theoretical basis for transforma-
tion, composition, decomposition and other operations

U890 In this paper, we

among different granularities
replace the equivalence relation as a congruence rela-
tion, and also get similar conclusion as above, that is,
all congruence relations form a complete semi-order lat-
tice.

Theorem 7 Tet C(I) be all the congruence re-
lations on algebra (X, o ), then under the partial order
”<” in Definition 4, (C(N), <) is a com-
plete semi-order lattice.

Proof: Let {R, |, be a subset of C(R) on algebra
(X, o). It is first proved N R, is the greatest lower
bound of {R,}, On the one hand, by Theorem 2
N R, is a congruence relation. Clearly Vo, N R, C
R, by Definition4, Yo, N R, <R_, so N R, is one
lower bound of {R,} . On the other hand, let R’ be
any lower bound of {R, |, then by Definition 4 V «,
R <R, thatis, Ya,R'" C R, ,s0R" CN_R, and R’
< N_R,. Therefore N R, is the greatest lower bound
of [R,],, - N,R,.

Then t( U_R,) is proved to be the least upper
bound of {R,},. On the one hand, clearly Va,R,
CuU.R, Ci(U,R,), and by Theorem 3 ¢( U_R,) is
a congruence relation, so by Definition 4 V«a,R, <
t(U,R,), therefore t( U_R,) is one upper bound of
{R,} .. On the other hand, let R" be any upper bound
of {R,|,, thus Va,R, <R’', thatis, Ya,R, € R’,
so U,R, € R'. Clearly R’ is transitive, and by the
minimality of transitive closure’ s definition, there ex-
istst( U,R,) ©R', thatis, t( U_R,) < R’, therefore
t( U,R,) is the least upper bound of {R_|
sup{R_}|

al a

relation

a

ol

and sign inf{ R

+» and sign
= t(U,R,). Based on the above analysis,
(C(R), <) is a complete semi-order lattice.

In the quotient space theory, different equivalence
relation corresponds to different granularity, the least
upper bound and greatest lower bound of equivalence
relation are also an equivalence relation, and all equiv-
alence relations form a complete semi-order lat-

18191 In the quotient space model based on alge-

tice
braic structure in this paper, the least upper bound and
greatest lower bound of congruence relation uniquely
exist, and are also an congruence relation, on which
there also exists a quotient operator. Therefore, differ-
ent granularities determined by congruence relations al-
so form a complete semi-order lattice.

Definition 3 shows that the quotient space (X/R,
o ") and original space (X, o) are homomorphic if
there exists quotient operator o'. Then the following is

got; If question ao x = b has a solution, question [ a ]
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o '[x] = [aox] = [b] has a solution, thus question
[a] e '[x] =[b] has a solution. Conversely, if ques-
tion [a] o '[x] = [ b] has no solution, that is to say,

la]o '[x] = [aox] # [b], then certainlyao x =
b has no solution. These show that the falsity preser-
ving principle is still valid in the quotient space based
on the algebraic structure.

3 Definition, existence and properties of
upper/lower quotient

On algebra (X, o), there exists quotient operator
o' on quotient space X, = X/R if and only if R is a con-
gruence relation. But not every equivalence relation R
is a congruence relation, therefore, not every quotient
space X, on algebra (X, o) has quotient operator o'. If
quotient space X, does not have a quotient operator,
there exists a question whether it can give an approxi-
mate quotient space which has a quotient operator. Ob-
viously, there are two kinds of approximate methods :
Try to find a smallest quotient space X among all the
quotient spaces which are larger than X, ; Try to find a
largest quotient space X among all the quotient spaces
which are smaller than X,. If there exists such an ap-
proximate tuple (X,X) , then it can be used to approxi-
mately describe quotient space X;. It can be proved
that the tuple (X,X) must exists and is unique. On u-
niverse X, there is an one-to-one correspondence be-
tween equivalence relation and partition, so it can be
proved the existence of tuple (X, X) from the viewpoint
of equivalence relation. In the following the concepts of
upper quotient and lower quotient are first defined,
based on which then the existence of tuple (X, X) is
discussed. B

From the above analysis, clearly quotient space X
is the antithesis of quotient space X. By Definition 4
the congruence closure ¢(R) of equivalence relation R
on algebra (X, o) is the finest grained one of the con-
gruence relations which are coarser than R, that is,
c¢(R) is the smallest one of the congruence relations
which are larger than R. Inspired by this, the largest
one of the congruence relations can be found which are
smaller than R in antithesis. The definitions are given
below.

Definition 5 Let R be an equivalence relation on
algebra (X, o). If there exists a congruence relation R
= R(R < R), and for any congruence relation R" =
R(R'" <R), there exists R" = R(R' <R) , then R(R)
is defined as the upper(lower) congruence of R. It can
be easily proved that there exists a quotient operator on
quotient space X/ R(X/ R), then X/ R(X/ R) is de-
fined as the upper (lower) quotient of X/R, and is

signed X (X) for short. B

In Definition 5, the upper congruence R and lower
congruence R are also congruence relations. By Theo-
rem 4 and 6, they also have quotient operators. Proof
is omitted. Obviously, congruence closure and upper
congruence are the same concept. -

In fact, the upper congruence R is the smallest
one of the congruence relations which are larger than
equivalence relation R, and the lower congruence R is
the largest one of the congruence relations which are
smaller than equivalence relation R. It can be proved
that there must exist the upper congruence R and the
lower congruence R of any equivalence relation R on al-
gebra (X, o). The following theorem shows it.

Theorem 8 There must exist the upper congru-
ence R and the lower congruence R of any equivalence
relation R on algebra (X, o), and R = c¢(R)
= ngRﬂeC(m)Ra’B = #( URﬂeC(.‘“),RaQRRa)'

Proof: By Definition 2 and 5, and by Lemma 4,
one can easily get R = ¢(R) = Nycp o R,. On the
other hand, let {R_ | be {R,| R, € C(R) N R, <
R}, by the proof of Theorem 7 sup{R,|,
t(U.R,), and by Theorem 3 ¢( U_R,) is a congru-
ence relation, then by Theorem 4 c¢(:( U R,)) =
t( UR,), therefore, 6 R =
t(Ug con. roerRa)-

By Theorem 4, 6 and 7, it’ s easy to get the fol-
lowing two conclusions. Proof is omitted.

by  Definition

Lemma 6 Let R be an equivalence relation on
algebra (X, o), Ris a congruence relation if and only
ifR =R =R

Lemma 7 Let R be an equivalence relation on
algebra (X, o), there is a quotient operator on X/R if
and only f R = R = R.

The definition and properties of upper/lower con-
gruence and upper/lower quotient are present above.
Then, let R be an equivalence relation of algebra (X,
o), if there doesn’ t exist a quotient operator on the
quotient space X/R, it can define a pair of congruence
of quotient

operators— ( R, R) and a pair

operators— (X, X) in antithesis. (X, X) can be con-
sidered as a pair of approximate operators on granulari-
ty X/R, thus, it can be used to approximately describe
the quotient space X/R. This provides theoretical basis
for using the idea of granular computing to approxi-
mately solve problems with algebra structure.

Some important properties of the above opera-
tors—upper/lower congruence and upper/lower quo-
tient are showed below.

Theorem 9 Let R, ,R, be two equivalence rela-

tions on algebra (X, o), and R, < R,, then there ex-
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ists: 1) Ry <R, ;2) R, <R,.

Proof: 1) R, <R,, thus by Definition4 R, C R,
then by Theorem 5 ¢(R;) € ¢(R,). And by Theorem 8
Ry =c¢(R), R, =c(R,),s0R, =c(R)) Ce(R,y)
= R,, therefore R, < R,.

2 ) By Theorem 8 clearly R, =
t( URaeC(N),RaQRIRa) Ct(R)) =R, and R, CR,,
thus R, < R,. By the maximality of lower congruence’
s definition, R, is the largest one of the congruence re-
lations which is smaller than R, , and by Theorem 3 R,
is a congruence relation, therefore R, < R,. o

Theorem 9 shows that the upper /lower congru-
ence operator possesses isotonicity, that is, if a quo-
tient space is fine, its upper/lower quotient space is
fine; if a quotient space is coarse, its upper/lower
quotient space is coarse. All the quotient spaces on al-
gebra (X, o) form a complete lattice, on which a pair
of lattice operators can be defined. In the following it
gives out the definitions of the lattice operators, and
discusses some important properties of the upper/lower
quotient operator. These properties provide a mathe-
matical foundation for further study on conversion and
structure characters of granularities.

Definition 6 Let Q(X) be all the quotient
spaces on algebra (X, ), X,, X, € Q(X), andR,,
R, be the equivalence relations of X, ,X, accordingly.
Then X, A X, is defined as the greatest lower bound of
X, and X,, and X, V X, is defined as the least upper
bound of X, and X,.

From the viewpoint of operators, the upper con-
gruence operator and lower congruence operator of R,
are R, ,R,, the upper quotient operator and lower quo-
tient operator of X, are X, ,X,, and the lattice operators
of X,,X, on Q(X) are X, A X, and X, V X,.

From the viewpoint of equivalence relation, the
of X, is R, = ¢(R)

= Ny, cr ccom Ry the equivalence relation of X is R,

equivalence relation

= t(Ug, ceom .r,cr Ry) 5 the equivalence relation of X,
A X, is R, N R,, and the equivalence relation of X, V
X,ist(R, UR,).

From the viewpoint of partition, X, A X, is the in-
tersection of X, ,X,, and X, V X, is the union of X/,
X,.

Theorem 10 Let X, ,X, be two quotient spaces
on algebra (X, o), then:

)X, = 19_1=X|a2>X|/\X2$)?/\X72a
XLV LSV, ) X AN S A
XZ’

50X, VX <X VX,

Proof: Let R,, R, be the equivalence relations of
X,, X, accordingly, and C(R) be all the congruence
relations on algebra (X, o).

1) The equivalence relation of XT is RT , and by
Theorem 7 RT is a congruence relation, so by Theorem
8 and Lemma 6 R_] = E, thelreforeX_1 = )? Similarly,
X = XT

2) The equivalence relation of X, A X, is c¢(R,
N R,), and the equivalence relation of XT A gis
c¢(R,) N c(R,), so proposition X; N X, < Z A Xj
equals toc(R, N R,) € ¢(R,) N ¢(R,). Now proof
starts. Clearly R, N R, € R,, R, N R, € R,, and by
Theorem 5 ¢(R, N R,) € ¢(R,), ¢(R, N R,) C
c¢(R,), thusc(R, NR,) Cc(R,) Nc(R,), therefore
X, ANX, <X, AKX,

3) The equivalence relation of XT V Xj
is t(c(R,) U c(R,)), the equivalence relation of X,
V X, ist(R, U R,), and the equivalence relation of
X, V X, isc(e(R, UR,)), so proposition X, V X, <
X, V X, equals to t(c(R,) U (R,)) < ¢(i(R, U
R,) ). Now proof starts. Clearly R, C (R, UR,), R,
C t(R, UR,), by Theorem 5 ¢c(R,) C c(t(R, U
R))), e(Ry) Cec(t(R UR,)),s0c(R)) Uc(R,)
C c¢(t(R, UR,)). Clearly c(t(R, UR,)) is a con-
gruence relation and is also an equivalence relation, so
it is transitive. By the minimality of transitive closure’
s definition, transitive closure t(¢(R,) U ¢(R,)) is
the smallest one of binary relations which are transitive
and include ¢c(R,) U ¢(R,), sot(c(R,) U c¢(R,))
C c¢(t(R, UR,)), that is t(c(R,) U ¢(R,)) <
c(t(R, UR,)), therefore)? V st X, VX,

4) It first proves proposition Uk o f,‘),RnglmRzRY
C ( URaeC(?7?),Ra£R1Ra) N ( URBEC(ER),RBQRZR;;)' For
V(x,5) € Ug ceom rcrnm Ry, there IR, (R, e
cC(N) JR,, SR, NR,), where (x,y) € R, . Because
(x,y) € R,, © R, N R,, there exists (x,y) e R, C
R, and (x,y) e R, & R,, thus (x,y)
€ Ukaeﬁ(}“),[\’agl\’lRa and (x,y) € URBE(:(N),RBQRZR/;,
S0 (x,y) € ( URD(EC(SW),RD(QR]RO() N
( Urgecom ryer,Rg)- Therefore U ooy r e nr,R
C (Ugpecon.rerRa) N (Ukﬁgc<m>,kﬁgﬁzRﬁ)~

Then proposition t(A N B) € t(A) N t(B) can
be proved, where A,B are binary relations. Clearly A
NBCAANBCB,thust(ANB) Ct(A),t(AN
B) Ct(B),sot(ANB) Ct(A) Nt(B). Now letA
= URQEC(}“),RQQRIRQ’B = URBEC(N),RBQRZRB’ based on

Y

the above proposition there exists

£(( URaeC(m),RagRlRa) N ( URBEC<.%>,RBQR2R/3>) c
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tCUg coom rcr Ra) N t( URBEC(m,RBngRB)-

Having the above two conclusions, the original
theorem now can be proved. The equivalence relation
of X, N X,isR, N R,, and the equivalence relation of

X, ANX,isR, NR,, so proposition X; A X, <X, A X,
;uals; Riﬂ Rjg R, N R,. By Theorem 3.1 and
R NR, =
LUk ceom memnnRy) S tCCUR coony rerRa) N
( URBEC(N),RBQRZR3>> C t( Ugeeom rerRe) N
i( URﬁgc(m)’RﬁgRZRﬁ) = R, N R, therefore X; N X, <
X, A X,

o STSimilar to the proof of X, A X, < X, A X, a-
bove, X, V X, < X, V X, can be proved and the pTroof

is omitted.
On algebra (X, o), let X,,X, be two quotient

the above two  conclusions,

spaces on which there exist quotient operators, and R, ,
R, be the equivalence relations of X, ,X, accordingly.
Thus on the compositive quotient space X; = X, A X,
there also exists quotient operator, and the correspond-
ing equivalence relation of X; is R, N R,. Then, if both
question [a], o,[x], = [b], and question [a],
o,[x], = [b], have a solution, question [a];o,[x];
= [acx]y =lacx], Nlacx], =[b], N[b], =
[ b],is known, therefore X; = X, A X, also has a solu-
tion. From the above analysis, if a question has a solu-
tion on quotient space X, ,X,, then it also has a solu-
tion on the compositive quotient space X; of X, ,X,.
These show that the truth preserving principle is still
valid in the quotient space model based on the algebra-

ic structure.

4 Algorithm of upper/lower quotient

Theorem 8, Definition 5 and Definition 6 show
that there must exist upper quotient X and lower quo-
tient X of a quotient space X/R, but which can’ t be di-
rectly calculated by the formulas in Theorem 8 for the
difficulty to get all the congruence relations of original
space, so it is necessary to further research on the al-
gorithm of upper/lower quotient. Because the algorithm
of upper/lower quotient is very complicated when the
universe is an infinite set which can’t be processed in
a computer. It is assumed the universe is finite in the
following.

Because there is a one-to-one correspondence be-
tween equivalence relation and partition, the upper/
quotient can be calculated by operation on either rela-
tion or partition. And upper quotient is the antithesis of
lower quotient in definition, therefore it only discusses

the algorithm of upper quotient based on the union of
blocks and the algorithm of lower quotient based on it-

eration of relations.

4.1 The algorithm of upper quotient based on
union of blocks

Based on the set theory and related knowledge,
every equivalence relation corresponds and only corre-
sponds to one partition. And a congruence relation is
also an equivalence one, so it can get a partition of
universe X by a congruence relation too. Then the ac-
cording equivalence partition is called a congruence
partition, and the corresponding equivalence block is
called a congruence block.

Definition 7 Let (X, o) be an algebra, A,B C
X,thendo B = {xoyl x € A,y € B} is defined as
a product of A and B.

Let R be an equivalence relation on algebra (X,
o), Fbe partition of R, andA,B € X/R. If R is a con-
gruence relation, product A o B will belong to only one
block of F. Hence, if A o B don’ t belong to only one
block of F, that is, more than one block of X/R is in-
tersectant with A o B, then partition ¥ should be modi-
fied by merging all the blocks intersectant with A B so
as to let only one block of upper congruence R include
Ao B. By Lemma 1, universal equivalence relation E is
a congruence relation, that is, the set X is a congru-
ence partition, so the algorithm can be completed in fi-
nite steps. Based on the above analysis, the pseudo-
code of the upper quotient Algorithm 1 is got as fol-
lows.

Algorithm 1 The algorithm of upper quotient in a fi-

nite universe

Input; algebra (X, o), equivalence relation R
Output: upper quotient X.
Program

LI, F = X/R = {A, A, A}

m) 9

L2, ifl FI =1 then jump to L12;

13, fori«—1tol FI

14, forje—1tol FI

L5, B—A 0 A

L6, fork<—1tol FI

L7, if BN A, #O then put £ into subscript set [
L8, if | 11 = 2 then do

Lo, M—U,_A;

L10, F— (F-{A liel]l) UM;

LI, Jump to 1.2

L12, upper quotient X = F = X/R = |A, A, A},

0<t<m;
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Let| XI =n, | FI =1 X/R| = m. If consider the
time consumption of conversion between equivalence
relation and partition in L1 is not considered, the main
time consumption of Algorithm 1 is in LS and L7, be-

m

cause the total time consumption of L3 to L5 is 2 Z
==

LA AL =] X 1? = n’ by Definition 7, and O(L6)
= 0(m) = 0(19) = O(L10). IfRis a universal e-
quivalence relation E, 13 takes O times, and the time
complexity of Algorithm 1 is O(1). Otherwise, when
the algorithm is at the best, that is, R is a congruence
relation, L3 takes only 1 time, and the time complexity
of 15 and L7 is O(n* + m’), therefore the time com-
plexity of Algorithm 1 is O(n® + m’). When the algo-
rithm is at the worst, L2 and L3 take O(m) times, the
time complexity of LS and L7 ismn” + (m® + (m -1)°
+o 42 =m’ + (M (m+1)>/4) =1 = O(mn’
+m*) , therefore the time complexity of Algorithm 1 is
O(mn* +m*).

Similar to the algorithm of upper quotient based on
the union of blocks, it can design an algorithm of the
lower quotient. By Definitions 5, upper quotient X is
coarser than quotient space X/R, so the algorithm of
upper quotient by merging blocks continuously is de-
signed. Then by Definitions 6, lower quotient X is finer
than X/R, so the algorithm of lower quotient by divid-
ing block accordingly is designed, and the algorithm of
lower quotient is also different from the algorithm of up-
per quotient in detailed program and time complexity.
But the analysis is similar, and the algorithm of lower
quotient is omitted.

4.2 The algorithm of lower quotient based on it-
eration of relations

Definition 8 Let R, ,R, be two equivalence rela-
tions of set X, then an iterative formula K using in the
algorithm of lower quotient is defined as follows: Vx,
yeX,(x,y) e Ryea(x,y) e Ry N (Vze X, (x
oz,y02z2),(z0x,z09) € R)).

In the algorithm of lower quotient based on itera-
tion of relations, the basic idea is as follows. Let R be
an equivalence relation on algebra (X, o), {R,,R,,
R,

and initializing the sequence R, = R. The sequence is

T -} be a sequence of equivalence relations,
altered continuously by iterative formula R,,, = K(R,)
where K is from Definition 8. Because X is a finite set,
there must have a minimal positive integer n which
makes R,,; = R, , then R, is the lower congruence R of

R, and X/R, is the lower quotient X of X/R. The pseu-
do-code of Algorithm 2 is as follows.

Algorithm 2 The algorithm of lower quotient in a finite

universe

Input; algebra (X, o), equivalence relation R

Output: lower quotient X.

Program :

L1, R, «R;

12, R, —0O;

L3, for each (x,y) e R,

14, isElement «— TRUE;

LS, for eachz € X

16, if (x02z,y02) ¢ R, or (z0x,z0y) ¢ R, then do
L7, iskElement «— FALSE ; break;
L8, if isElement = TRUE then do
19, R, U (x,y);

L10, if R, # R, then do

L11, R, <R, ; jump to 12;

L12, lower quotient X = X/R,;

Let] RI = n, and 1.2-L11 is mainly considered.
If R is an identity equivalence relation, L3 takes 1
time, L8 and L10 takes O times, and O(L3) = O(n),
then the time complexity of algorithm is O(n’). Other-
wise, R is a binary relation, then the number of ele-
ments in Ris O(n’) , that is, O(L3) = O(n*). When
the algorithm is at the best, that is, R is a congruence
relation, 1.3 takes only 1 time, and the time complexity
of Algorithm 2 is O(n’). When the algorithm is at the
worst, 1.2 and L3 take O(n) times, and similar to Al-
gorithm 1 the time complexities of Algorithm 2 is n’ +
(n=-1) +-+1 =n*(n+1)/4 = 0(n*).

Similar to the algorithm of lower quotient based on
iteration of relations, an algorithm of upper quotient
can be also designed, but there are two differences be-
tween them in the following: The iterative formula is
different. After getting the minimal positive integer n
which makes R,,, = R,, R, must be converted into an
equivalence relation, that is, the transitive closure
t(R,) of R, should be got, then ¢(R,) is the upper
congruence relation. Of the upper quotient algorithm,
the iterative formula is showed in the following, and
the other analysis is omitted.

Definition 9 Let R, ,R, be two binary relations of
set X, then an iterative formula L using in the algorithm
of lower quotient is defined as follows: Vx, v € X,
(x,y) e Rya(x,y) e RV (I (xy, ), (%, 5,)
eR,x=x-°2,)5=y0°%)
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4.3 The comparison of two algorithms

Example 1
equivalence relation of algebra (X, o) shown in Table 2,
where X = {0,1,2,3,4,5,6,7}, and binary algebraic

operation x o ¥ means (x X y)mod8. It can be proved

Suppose R shown in Table 1 is an

that R is not a congruence relation, then by Algorithm 1
the upper quotient of X/Ris X =1{{0,2,4,6!,{1,5},
{3,711, and by Algorithm 2 the lower quotient of X/R
is X ={{0},{1,5},{2},{3,7},{4f,16f}.

Table 1 ~ Equivalence relation R
R 0 1 2 3 4 5 6 7
0 vV x X X X X X
1 X vV X X X vV X X
2 vV X vV X X X X X
3 x x x VvV o x x x V
4 X X X X Vv X vV X
5 X vV X X X vV X X
6 X X X X vV X Vv X
7 X X X vV X X X vV
Table 2 Algebra (X, o)
° 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

There is a one-to-one correspondence between
equivalence relation and partition which are intercon-
vertible. An upper (or lower) congruence is also an
equivalence relation, and an upper (or lower) quotient
matches a partition. So, the algorithm of the upper (or
lower) quotient can be designed by operation on either
relation or partition, since they are inherently consist-
ent. But in the concrete approaches, they are differ-
ent. In the method of operation on partition, by mer-
ging blocks (or dividing a block ) continuously, it fi-
nally gets the finest (or coarsest) grained one of the
congruence partitions which are coarser (or finer) than
partition X/R , which is just the upper (or lower) quo-
tient. But in the method of operation on relation, by
modifying the equivalence relation iteratively, it ob-
tains the upper (or lower) congruence at last, by
which it then gets the upper (or lower) quotient. The
main differences of the above two methods can be seen

from Algorithm 1, Algorithm 2 and Example 1.

Although the algorithm of upper quotient based on
union of partitions can’t be directly compared with the
algorithm of lower quotient based on iteration of rela-
tions, upper quotient is the antithesis of lower quotient
in definitions, and the time complexities of upper quo-
tient algorithm and lower quotient algorithm are at the
same order of magnitude. Therefore, the quality of the
above two methods (operation on relation or partition )
can be compared by comparing Algorithm 1 and Algo-
rithm 2. While being O(n”> + m’) at the best, the time
complexity of Algorithm 1 is O(mn’ + m') at the
worst. But in Algorithm 2, the best time complexity is
O(n’), and the worst time complexity is O(n*). In
the above, | X | = n, which means n is the number of
elements in universe X, | X/R| = m, which means m
is the number of blocks in equivalence partition X/R,
and m < n. Thus, when m = n, which means m =
O(n), the best time complexity of Algorithm 1 is
O(m’), the worst time complexity of Algorithm 1 is
O(m"), and clearly the method of operation on blocks
is similar to the method of operation on relations in the
time complexity. But, if m < nand m’ < n’, then the
best time complexity of Algorithm 1 is O(n’), the
worst time complexity of Algorithm 1 is O(mn”) , and
the method of operation on blocks is much more better
than the method of operation on relations in the time
complexity.

5 Conclusions

During many granular computing models, the quo-
tient space model constructs granularity by equivalence
relation, and different equivalence relation corresponds
to different granularity'"®"*’ | so the interrelations of
equivalence relations instead of granularities can be
discussed, and it is very effective and concise to study
the quotient space model based on algebraic structure
by equivalence relation. Given an equivalence relation
on original algebraic space, one may not necessarily
get an algebraic quotient operator on the quotient
space, because the universe structure is not taken into
account. As to obtain the algebraic quotient operator,
the interrelation of elements on universe must be con-
sidered, that is, some constraints must be added to
equivalence relation. It shows that the universe struc-
ture is very important in the quotient space model
based on algebraic structure, because it enhances the
model’ s capability of knowledge expression, but it also
increases the complexity of problem granularization.

In the quotient space model based on algebraic
structure of this paper, a granularity is determined not
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by an equivalence relation but by a more stronger con-
straint—a congruence relation. Because all the congru-
ence relations form a complete semi-order lattice, it
still remains its completeness of granularities. In addi-
tion, the construction process of an algebraic quotient
space is a homomorphic mapping, so the falsity preser-
ving principle and truth preserving principle are still
valid. These show that the two basic conclusions of
quotient space theory introduced in Section 1 are still
valid in the quotient space model based on algebraic
structure.

The default universe structure 7' is assumed as a
topology in the classic quotient space model proposed
in Ref. [18], and it is well known that algebra is a
very important and more common universe structure, so
in this sence the quotient space model based on alge-
braic structure proposed in this work has not only ex-
tended the existing quotient space models but also pro-
vided theoretical foundation for the combination of quo-
tient space theory and algebra theory.
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