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Abstract

Aiming at the adverse effect caused by observation noise on system state estimation precision, a

novel distributed cubature Kalman filter ( CKF) based on observation bootstrap sampling is pro-

posed. Firstly, combining with the extraction and utilization of the latest observation information and

the prior statistical information from observation noise modeling, an observation bootstrap sampling

strategy is designed. The objective is to deal with the adverse influence of observation uncertainty by

increasing observations information. Secondly, the strategy is dynamically introduced into the cuba-

ture Kalman filter, and the distributed fusion framework of filtering realization is constructed. Better

filtering precision is obtained by promoting observation reliability without increasing the hardware

cost of observation system. Theory analysis and simulation results show the proposed algorithm feasi-

bility and effectiveness.

Key words: state estimation, cubature Kalman filter ( CKF) , observation bootstrap sampling,

distributed weighted fusion

0 Introduction

The state estimation problems of a nonlinear sys-
tem widely exist in the field of signal processing, inte-
grated navigation, target location and tracking, etc''.
The implementation principle for existing state estima-
tor is, under the framework of recursive Bayesian esti-
mation, to take the advantage of all observation infor-
mation to construct a state posterior probability distri-
bution function, and then to obtain state optimal esti-
mation according to the minimum variance criterion.
While Kalman filter (KF)"*' is the typical implementa-
tion for linear Gaussian system. However, with regard
to nonlinear features of estimated system, the optimal
solution usually cannot be resolved. Therefore, a large
number of suboptimal approximation algorithms are pro-
posed such as the extended Kalman filter ( EKF) Al
of which realization mechanism is to realize the local
linearization of state equation and observation equa-
tion. It only calculates the posterior mean and covari-
ance accurately to the first order with all higher order
moments truncated. If the estimated system nonlineari-
ties are very strong, EKF usually can not obtain good

filtering result and even lead to filtering divergence
phenomenon'*’.

Considering that the probability density distribu-
tion is easier to be approximated than nonlinear func-
tion'®’ | the application of sampling method for approxi-
mating posterior probability distribution to solve the
state estimation problem of nonlinear system is increas-
ingly attracting widely attention. The sampling method
is mainly divided into two categories; stochastic sam-
pling and deterministic sampling. The stochastic sam-
pling nonlinear filter, namely particle filter (PF)"*
is a kind of Monte Carlo method. In the filtering
process, a set of stochastic points with weight, sampled
from the state space, are adopted to approximate state
probability density function. As a result, the optimal
estimation is approximated highly, and it needs not to
be subject to the constraints of linear and Gaussian as-
sumption. However, a large number of particles are
needed to ensure the filtering precision and conver-
gence, the calculation of stochastic sampling nonlinear
filter is heavier than deterministic sampling filter. Mo-
reover, the stochastic sampling mechanism often leads
particles to degeneracy after a few iterations. The ad-

verse effect caused by particle degeneracy is mitigated
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in a certain degree through re-sampling, but the re-
sampling process results in the reduction of particles
diversity. The typical implementation of deterministic
sampling filter mainly includes unscented Kalman filter
(UKF) ") and cubature Kalman filter ( CKF)!""?,
UKF approaches nonlinear state posterior distribution
by UT transformation strategy, and it has higher uni-
versality for nonlinear system with Gaussian noise. But
whether the selection parameter is reasonable or not in
UKF, it affects the estimation precision of system state
directly. In addition, the problem that filtering vari-
ance is not positive definite may occur. In essence, a
third-degree spherical-radial cubature rule to compute
integrals numerically is derived in CKF. Nonlinear
state posterior distribution is approximated through a
set of points with deterministic space position distribu-
tion and weight. In the process of sampling and filte-
ring, the weight in CKF is positive, so as to ensure
that the filtering covariance is positive definite matrix.
The distributed weighted optimal fusion technology
is one of the effective methods to improve state estima-
tion precision. Through the synergy between sensors to
extend the measuring range, improving the information
redundancy and credibility, and then the objective of
improving state estimation precision is achieved. The
fusion structure includes the centralized, distributed
and hybrid while the distributed structure with fault-tol-
erant is the popular method used in implementation. In
addition, achieving multi-source information will inevi-
tably lead to the increase of the burden of hardware re-
source (especially sensor). Aiming at improving filte-
ring precision without increasing hardware cost, reali-
zation of the distributed filter for nonlinear system state
estimation has always been focused by experts and
scholars in related field. To solve the above problem,
an observation bootstrap strategy has been designed
through combining the latest observation with the prior
statistical information from observation noise modeling.
On this basis, the bootstrap observation set is built and
then applied to CKF filtering framework. Combined
with distributed weighted optimal fusion technolo-

U] 5 novel distributed cubature Kalman filter

)
based on observation bootstrap sampling ( DCKF-OBS)
is proposed. Its advantage is to improve state estima-
tion precision without increasing hardware cost ( the
number of sensor and accuracy) , through reducing the

uncertainty of latest observation information.
1 Observation bootstrap strategy

Considering the general nonlinear discrete-time
dynamical system, the system equation and observation

equation are given as follows

x, = f(x,) +w (1)

z, = h(x,) +v, (2)
where £ is the time index, f( +) denotes the state transi-
tion function. z, is the observation vector and h, ( - ) de-
notes the mapping relation between observation and
system state. w, and v, denote system noise and obser-
vation noise respectively, and those noises are assumed
to be zero-mean Gaussian-distributed random variables
with variances of a'i.k and O'fk.

Aiming at reducing the adverse effect caused by
the uncertainty and unicity of single sensor observa-
tion, the bootstrap sampling points of sensor observa-
tion are obtained through improving the degree of free-
dom according to the observation bootstrap strategy :

Z, = h(x,) +v, +v, (3)
where v, denotes bootstrap observation noise uncorrelat-
ed to v, and v} is zero-mean Gaussian-distributed ran-
dom variable with variance of O'i};(i =1,2,-,N de-
notes the number of bootstrap observation). The boot-
strap observation noise covariance is derived as

R = Cov(v, +v,, v, +v))

E[(v, +v) (v, +v)"]
a'ik + 0'%5; + E["k("i)T] + E[ (VZ)TVk]
(4)

Since v} is uncorrelated to v,, and E[v,] = 0,

E[v,] = 0. The bootstrap observation noise covariance
is simplified as
R =0, +\o; (5)
Note that R denotes physical sensor observation
covariance when A = 0. R denotes bootstrap observa-
tion covariance when A = 1. Namely, on the basis of
physical sensor observation, bootstrap observation noise
with variance of O'fz’ is introduced to enrich observation
priori information and improving the degree of freedom.
Combined with distributed weighted optimal fusion
technology , the bootstrap observation is fused for an ef-
ficient and reliable state estimation.

2 Cubature Kalman filter

The optimal solution to solve nonlinear filtering
problem needs to get a complete description of condi-
tional probability density function. In CKF implemen-
tation, a third-degree spherical-radial cubature rule is
extended to compute a standard Gaussian weighted in-
tegral of f(x) as follows. As a result, conditional pos-
terior probability is obtained'"
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I(f) = [f(x)N(x:%,Pydx = /LY, f(x + /PE)
fin
(6)
N(x;x,P) denotes a normal distribution, where X and
P are its mean value and covariance respectively. L =
2n denotes the number of cubature points, and n de-
notes the dimension of estimated system state, &; is the
jth cubature point. Assuming that covariance matrix
P, at time k is positive and known, therefore the pos-
terior probability density p(x,1 Z, ) can be denoted as
N(xk;i‘kl,{,Pkl,f). Filtering realization of CKF is writ-
ten as follows
Step A Time update step
1) Evaluate cubature points
Py, :Su/f(sk\UT (7)
Xlk\k = Sklkgj +-’2k|k (8>

where £ = /g[a]j,j =1,2,L,[8];, € RN de-
notes the jth column in matrix [ I, - I"""] e R"".
2) Evaluate propagated cubature points X3/, ,
state one-step prediction ikﬂ\ , and its error covariance
P
X;Jljlk =f<Xjk\k> (9)
-;"/mlk = ZJ_L:[X;;{H‘/L (10)
P, = ZJ.L:]Xk*ar'l{k(ini{k L _}k+l\k<%k+llk)T + U'ik
(11)
Step B Observation update step
1) Evaluate cubature points
Pooi = Spe X (S’ (12)
XJJ;HM = Sé + £k+1\k _ (13)
2) Evaluate propagated cubature points Z,,,, and
observation one-step prediction z,.,,,

Z]1;+1|k = h<Xj/f;+llk) (14)
A Lo
Zpenin = z].:]Z]kmk/L (15)

3) Evaluate innovation error covariance Py, , and

cross-covariance between state and observation P},

z L j j T z 2 T 2
Pl = Zizlzjlmllk(Z/Iﬁ-llk) /L =200 (Zp) + o

Vk+1

(16)
Pl = 2 [L=1X11;+1|k(Z'QA+1\k)T/L - fk+1\k(2k+llk)T
(17)

4) Evaluate the filtering gain K, ,, at time k + 1
K. = Pﬁuk<PZZ+1|k)_l (18)

5) Estimate the state X,,,,,., and it corresponding
error covariance P, ., at time k + 1

X = %o + Koy (2 = Zeans) (19)

P = P — K Pl (K )T (20)

In essence, the nonlinear state posterior distribu-
tion is approximated through a set of points with deter-
ministic space position distribution and weight in CKF.
In the process of sampling and filtering, weight in CKF
is positive all the time, which ensures that the estimate
covariance is positive definiteness. In addition, in the
aspect of real-time, because of deterministic sampling
and less samples, CKF is superior to PF. In the aspect
of precision, the numerical integral based on third-de-
gree spherical-radial cubature rule is adopted in CKF,
to approximate Gaussian weighted integral. Its approxi-
mation precision of probability distribution after nonlin-
ear transformation is superior to UKF adopted unscent-

ed transformation'"’

3 Distributed cubature Kalman filter based
on observation bootstrap sampling

In the distributed state fusion structure, each sen-
sor observation is assigned to one estimator independ-
ently, namely taking use of the observation of each
sensor to filter, then the local estimation is delivered to
the center node for fusion. The global state estimate

and its covariance are given as
N

iim = Ziy:lwiiim (21)
N - _ _
Pj, = [zizl(PZUf) 11 1 (22)

where X}, , and P}, respectively denote the local estima-
tion and its error covariance corresponding to the ith
sensor. ), denotes the weight of x},, for fusion, and is
calculated as follows

wi = [Z?ZI(PZIk>7IJ71(P;jIk - (23)

In the single sensor observation system, the obser-
vation information of system state can not be obtained
by multi-sensor from physical structure, but the boot-
strap observation set provides all observation informa-
tion needed by the local estimations in distributed pro-
cessing. To take full advantage of the physical observa-
tion, and the complementary and redundancy informa-
tion in bootstrap observation, each observation takes
part in filtering respectively, and combining with the
information fusion theory to achieve the global optimal
estimation. The bootstrap observation set at k is Z, =
{z, 1 z, = h,(x,) +v, +v,} according to Eq. (3),
and the DCKF-OBS algorithm is summarized as fol-

lows :
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1. Initialize state estimation and its error covariance £5,, = X,
and P, = P,.

2. Generate the bootstrap observation set Z,,, according to
Eq. (3).

3. Calculate the local estimation £;,,,,,, and its error co-
variance P}, .., , according to physical observa-
tion z,,,;, bootstrap observation set Z,,, and
Eq. (7) to Eq. (20). Note that the bootstrap ob-

servation error covariance is given as
L. ‘ A
P= — d j T 2 T
kel = E, . Zk+1|k(Zk+1\k> /L =2 (Zeny)

+ 0'11: 1 + /\0-12»,1

4. Solve the global estimation £¢,,,,,, according to
Eq. (21) to Eq. (23).

5. Let £y 00 = Xlopn and Py = Pl so
the current state estimation is obtained.

6. Increase k and continue to Step 2.

4 Simulation result and analysis

To verify the validity of DCKF-OBS, the Monte
Carlo simulations of target tracking are presented in the
Cartesian coordinate system. It adopts the typical uni-
form motion model and nonlinear observation model,
and the number of Monte Carlo is 200. The root mean
square error( RMSE) is used to evaluate the property
of the algorithm in filtering precision. In this simula-
tion environment, motion state equation and observa-
tion equation are given as

x, = Fyx +Low,

=y 61"+ vy
A 0
where  Fy,_, = [ 0 A] and T =
2
[T /2T 20 0] denote the state transfer matrix
0 0 /2

and the system noise drive matrix respectively, and A

= [(1) 71-] , here, the sampling period 7 = 1. v, =

/x; +y; and § = arctan(y,/x,) denote the radial dis-
tance and the azimuth angle respectively. a'i,k =
diag([2%, 2*]) and o, = diag( [60%, 0.1°°]) de-
note system noise covariance and observation noise co-
variance respectively.  The initial state x, =
[8500 25 7000 30]", and the associated covari-
ance P, = diag([100 10 100 10]). The number
of Monte Carlo simulation is 50. The experimental plat-
form adopts PC running Windows XP, with i7-
2600CPU, main frequency 4GHZ and 4G memory,
and the simulation software is Matlab R2012a. Three

algorithms, UKF, CKF and DCKF-OBS are compared
in simulation.

The comparison of state estimation RMSEs of
UKF, CKF and DCKF-OBS, with the number of boot-
strap observation of 15, is given in Fig. 1 and Fig. 2.
Due to that bootstrap observation extends the observa-
tion noise distribution range on the basis of physical
observation, the noise variance increases accordingly,

but in distributed weighted fusion process, according to
.. N .. _ _

Eq.(22) Pf, < Py, | Zi=1(PZ'k) <

[ 2 (P

error covariance is less than that of local state of each

Namely global state estimation

filter. Each local estimation error covariance as the
part of weight is helpful to reduce the global state esti-
mation error covariance. In single sensor observation
system, compared to the state estimation with physical
observation, the precision of global state estimation
fused from local state estimation with bootstrap observa-
tion is higher. But the two kinds of local state estima-
tions, even the local state estimation with bootstrap ob-
servation, are conducive to system state estimation pre-

cision after distributed optimal fusion.
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The quantitative comparison of mean state estimation
RMSEs of the three algorithms are given in Table 1. The
number of bootstrap observation is 30, and it is known
clearly that the RMSE value of DCKF-OBS is the low-
est. Fig.1, Fig.2 and Table 1 all indicate that the
mean value of the RMSEs of DCKF-OBS is the lowest.
The filtering precision of CKF is higher than UKF, and
the DCKF-OBS is superior to the others. The analysis

is elaborated in Section 2 and Section 3.

Table 1 The RMSEs comparison when the number of
bootstrap observation is 30
Algorithms UKF CKF DCKF-0OBS
Horizontal direction 0.1603 0.1579 0.1508
Vertical direction 0.1368 0.1348 0.1288

The comparison of the mean value of state estima-
tion RMSEs is given in Fig. 3 and Fig. 4 in the condition

0.1560 ~
-

0.1545

0.1530

0.1515 4

0.1500 4

The mean value of RMSE

0.1485 4

0.1470 T - T - T - T

T T
0 10 20 30 40 50
The number of bootstrap observations

Fig.3 Horizontal direction

0.1339 4

0.1326

The mean value of RMSE
(=]
Iy
(=3
(=}
1

T T T T T
0 10 20 30 40 50
The number of bootstrap observations

Fig.4 Vertical direction

of different number of bootstrap observation. As shown
in the figures, with the number of bootstrap observation
increasing, the mean value of state estimation RMSEs
decreases. At the stage of bootstrap observation number
from 5 to 35, the mean value of RMSEs decreases
sharply, and state estimation precision increases obvi-
ously. At the stage of bootstrap observation number
from 35 to 50, the mean value of RMSEs is {lat.
Namely the effect on enhancing state estimation preci-
sion through increasing the number of bootstrap obser-
vation is slight. Moreover, with the increasing number
of bootstrap observation, the hardware undertakes a
larger amount of calculation. Therefore, performance
indexes such as precision, real-time and calculation
should be considered in practice. So as to select the
appropriate number of bootstrap observation involved in
filtering, and as a result, the superior precision of sys-
tem state estimation is achieved. The RMSEs quantita-
tive comparison of DCKF-OBS is given in Table 2 with
different number of bootstrap observation.

Table 2 The RMSEs comparison of DCKF-OBS with different number of bootstrap observation

5 10 15 20

25 30 35 40 45 50

0.1559 0.1542 0.1521
0.1334 0.1314 0.1301

Horizontal direction

Vertical direction

0.1516 0.1509 0.1501
0.1292 0.1291

0.1492 0.1487 0.1488 0.1482
0.1282 0.1274 0.1273 0.1269 0.1264

5 Conclusions

The estimation of nonlinear system is a widely
considered field in engineering application, while the
filter algorithm and the sensor accuracy are two domi-
nant factors influencing the state estimation precision.
Considering the two factors above, a novel distributed
cubature Kalman filtering algorithm based on observa-
tion bootstrap sampling is proposed under the condition
of single sensor observation system. In this algorithm,

firstly, on the basis of physical observation, the boot-
strap observation set of system state is obtained though
bootstrap strategy. Secondly, the physical observation
and bootstrap observation respectively participate in cu-
bature Kalman filtering process, so that the local state
estimation is achieved. And then global state estima-
tion is achieved through adopting the information fusion
theory to fuse local state estimations. The simulation
experiments indicate that the DCKF-OBS is superior to
CKF by comparing the state estimation RMSE. Fur-
thermore, the state estimation precision is improved
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continually, along with the increase of the number of
bootstrap observation. While the number is greater
than 15, the state estimation precision increases slight-
ly. The algorithm applies to nonlinear non-Gauss state
estimation problem with single sensor observation sys-
tem.
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