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Abstract

Buffer influences the performance of production lines greatly. To solve the buffer allocation prob-

lem (BAP) in serial production lines with unreliable machines effectively, an optimization method is

proposed based on an improved ant colony optimization (IACO) algorithm. Firstly, a problem do-

main describing buffer allocation is structured. Then a mathematical programming model is estab-

lished with an objective of maximizing throughput rate of the production line. On the basis of the de-

scriptions mentioned above, combining with a two-opt strategy and an acceptance probability rule,

an TACO algorithm is built to solve the BAP. Finally, the simulation experiments are designed to

evaluate the proposed algorithm. The results indicate that the IACO algorithm is valid and practical.

Key words: buffer allocation, improved ant colony optimization (IACO) algorithm, serial pro-

duction line, throughput rate

0 Introduction

The buffer allocation problem (BAP) is a signifi-
cant optimization problem faced by engineers of manu-
facturing system, which refers to the way of allocating
buffer storage within the production line. While buffers
can compensate for the blocking and starving of stations
in the production line, inclusion of buffers results in
additional costs probably due to increased capital in-
vestment, floor space and in-process inventory. There-
fore determining appropriate buffer storage sizes is still
a challenging problem.

Due to its importance and complexity, several au-
thors have been working on the BAP for many years.
Ref. [1] developed a simulated annealing approach for
solving BAP in reliable production lines with the objec-
tive of maximizing their average throughput. Ref. [2 ]
presented five different search algorithms to solve the
BAP of reliable production lines, including the genetic
algorithm ( GA), tabu search, simulated annealing,
myopic and complete enumeration. Ref. [3] proposed
an artificial neural network and myopic algorithm based
decision support system on reliable production lines.
However, the aforementioned literature only focused on
reliable production lines. Ref. [4] proposed a quanti-
tative method to determine the buffer size in front of the
bottleneck under multi-product. Ref. [5] developed a

new efficient simulation model and an experimental
cross matrix for serial production lines to determine the
optimal buffer size. Ref. [6] and Ref. [7] proposed
an exact Markovian model and an approximate analyti-
cal method for unreliable serial flow lines to analyze the
relationship between throughput and buffer capacity,
respectively. But the aforementioned literature only
studied an unreliable serial flow line with two worksta-
tions and an intermediate buffer. Ref. [8] implemen-
ted a combined artificial immune system optimization
algorithm in conjunction with a decomposition method
to allocate buffers in transfer lines for maximizing eco-
nomic profit and throughput. Ref. [9] presented a GA
and simulation to solve the BAP of flexible manufactur-
ing system. However, the drawback of these meta-heu-
ristics such as GA in solving combinatorial optimization
problems is the necessity to set a number of uncertain
parameters, which significantly increases the search
time and the number of evaluated solutions to find the
optimal or near optimal solution. Ref. [ 10] developed
a petri-net based simulation model to study the continu-
ous flow transfer line with three machines and two buff-
ers, and then analyzed the relationship between the
equipment reliability and buffer capacity. Ref. [11]
presented a local search based degraded ceiling ( DC)
approach for solving the BAP. However, the objective
function may not be a monotone increasing function as

the search time goes.
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In this paper, an improved ant colony optimization
(TACO) algorithm is used to solve the BAP. Recently,
the ant colony optimization ( ACO) algorithm has been
successfully used by many scholars to solve combinato-

[12,13]

rial optimization problems . It has many good fea-

tures; distribution, positive feedback, and robust-
ness'"*'. However, ACO may lead to a local optimal
solution. Thus, some corresponding improvements are
done to prevent it from local optimization. One is that
when the algorithm is stagnated, the pheromone inten-
sity is reset on all paths in order to break out of the
stagnation. Secondly, when the near optimal solution is
found, some changes will be made by two-opt strategy
to get new solutions. Thirdly, an acceptance probabili-
ty rule of simulated annealing for updating the best so-
lution is combined with the algorithm. Simulation re-
sults indicate that the proposed approach can lead to
results that are consistent with our expectations.

1 Problem description

In this paper, the BAP in a serial production line
with unreliable machines is examined, as depicted in
Fig. 1, where the rectangles represent machines M, (i
=1,-+,k) and the circles indicate buffers B,(i = 1,
-,k —1). The assumptions of the BAP in a serial pro-
duction line are listed as follows; 1) Parts go through
each of the machines and buffers in sequence, from
machine M, to M,. 2) The processing times of all parts
are constant and equal for all machines, and the trans-
portation time is negligible. 3) Machines are subject to
breakdowns. Times to failure and times to repair for
machines are exponentially distributed. 4) Machine M,
is starved at time ¢ if M, | is down and buffer B,_, is
empty; Machine M, is blocked at time ¢ if M,,, is down
and buffer B; is full. 5) The first machine is never
starved, and the last machine is never blocked.

TH-OH- Q- O-fit-

Fig.1 Serial production line

To solve the BAP, evaluation and optimization
tools are needed. The evaluation tool is used to calcu-
late performance measures of production lines which
have to be optimized (e. g. , the average throughput).
A Dallery-David-Xie ( DDX ) algorithm is applied
which is proposed in Ref. [15] to calculate the
throughput rate of all new configurations.

As shown in Fig.2, the principle of DDX algo-
rithm is to decompose a k-machine line L into a set of k
— 1 two-machine lines. Each line L(7) is composed of

an upstream machine M, (i) and a downstream machine
M,(i), separated by a buffer B,. The procedural form
of this method is given as follows;

(o) wo

u, (i) uq(i)

Fu (i) S; ra(i)

tu(i) ta (i)
Line(i)

Fig.2 Decomposition method

Step 1: Initialization ;
r,(1) =r,u(l) =u
r(i) =1, u (D) = wy, (0= 1,2, k)
where r, (i) and u, (i) denote the failure rate and re-
pair rate of the upstream machine, respectively; r, (i)
and u, (i) denote the failure rate and repair rate of the
downstream machine, respectively; r, is the failure rate
of machine M;, r, = 1/MTBF,; u, is the repair rate of
machine M, , u, = 1/MTTR,; MTBF and MTTR repre-
sent the mean time between failures and the mean time
to repair, respectively.
Step 2: Forany: =2,3,--- k-1,
1,(i) = 15(117—1) +el—i—ld(i 1) -2 (1)
u, (i) =xxu,(i-1) +(1 —x) xu (2)
r,(i) =1,(i) xu,(i) (3)
u; ; f ] (i-1 ) (4)
L) X E(1)

e. = ——andx =

i i

P(i) =1 - £

. 5

ez/( I’) ( >
where [, (i) and 1,(i) are the ratio of r (i) to u, (i)
andr, (i) tou, (i), respectively; E(i) is the efficiency

of line L(i); e; is the isolated efficiency of machine
M.; P,(i) denotes the probability of downstream ma-
chine being starved; e, (i) is the isolated efficiency of
downstream machine M, (i).
Step 3: Forany: =k -2, k-1--2,1;
. 1 1 .
Id(") _E(i+1)+e”|_lu<l+l>_2 (6>
ug () =y xu, (i +1) + (1 -y) xuy,, (7)
r(i) = 1,(i) xu,(7) (8)
P,(i+1
u , (0 ) (9)

:7Ed =
T M T L) xEG+ 1)

P,(i) =1 - B (10)
e, (1)
where e, (i) is the isolated efficiency of upstream ma-
chine M, (i); P,(i) denotes the probability of up-
stream machine being blocked.
Step 4 :
If7,(0) #1,0i):
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E(i) = Y
1,(i) x e -1 (1)
L(i) x (1 +1,(i)) xe —1.(i) x (1 +1,(i))
(11)
2

@ = oy () MelDw ) = A, (D)

x(— bt 1
D) A T u (D) 4 ()
(12)

where t,(i) and ¢,(i) denote the processing time of

machine M, (i) and M, (i) ; S, represents the capacity
of the ith buffer.
(i) =1,(i) =1

L+ +ru(i) +7,(i) o]
B = I 7)o xr,(i) (i)
RS r,(i) +r, () 1
r O
(13)
Step 5: fE(1) = E(2) =+ =E(k-1), stop

the procedure, otherwise go to step 2.

On the basis of the descriptions mentioned above,
the throughput rate of production line is written as fol-
lows :

E = f(S) = f(S5,,8,,,5.) (14)

Therefore, the mathematical model for the BAP
can be formulated as follows

Maximize £ = f(S) = f(S,,S,,---,S8,,) (15)
Subject to

T s =N (16)

i=1 !

0<S,=<S5,@=1,-k-1) (17)

S, nonnegative integers (1 = 1,---,k - 1) (18)
where N is the total buffer capacity, which is a fixed
nonnegative integer; f(S,,S,,:+,S,_,) is the through-
put rate of the production line to be maximized; S, is
the upper bound for each of the buffer locations.

For a production line with £ machines and N total
buffer capacity, the number of possible buffer alloca-
tion configurations can be calculated as follows, which
is presented in Ref. [11];

o I (N+1)(N+2)--(N+k-2)

N+k-2 = (k_2>|

As for the optimization tool, it is a search method

(19)

that tries to find an optimal or a near optimal solution
which in our case is the capacity of each buffer in a pro-
duction line. Therefore, a new optimization method based
on IACO algorithm is proposed in the next section.

2 Proposed algorithm

ACO algorithm is a novel biomimetic algorithm.

Scholars have solved some difficult problems in discrete
system optimization based on the behavior of ants see-
king a path between their colony and a source of
food' '’

lease pheromones on the paths they have visited, then

When ants seek for food, the front ones re-

the following ones will randomly choose one path ac-
cording to the pheromones. When the cycle repeats,
the shorter path will have a stronger pheromone trail
more quickly. After a certain period of time, all the
ants will choose the short trail. The procedure of stand-
ard ACO is shown in Fig. 3.

As mentioned in introduction, standard ACO may
lead to a local optimal solution. In the next sections,
details of TACO are provided which is improved by
combining with a two-opt strategy and an acceptance
probability rule.

1. Initialization: set parameters and initialize variables
2. While stop criterion is not satisfied do

3. While the end node has not been visited do

4 Every ant chooses a path based on pheromones randomly
5. end while

6. Update pheromones

7. Evaluate all solutions and update the best one

8. end while

Fig.3 Pseudocode of standard ACO

2.1 Encoding

For the BAP, the feasible solution can be ex-
ySia -
there is a certain number of F; paths in front of the ith
buffer, where F; < S,. If the jth path in front of the ith
buffer is selected, the initial solution S should be

changed correspondingly.
fl<j< (F, +1)72;

It is assumed that

pressed as S = {S,,S,,

S =8 +7,8 0 =S, -] (20)
If(F, +1)2<j<F,:

S,i:Si_[j_(Fi-'—l)/z} (21)

S’ = S +[j_(Fi+1)/2J (22)

where S’; is the adjusted capacity of the ith buffer.

2.2 Initialization
Set the initial buffer allocation S; «— N/(k - 1)
and any remaining resource is placed in the middle lo-

cation.

2.3 Searching

Firstly, all the ants are placed in the first buffer.
Then the ants choose paths with the probability p};, un-
til the last buffer B,_, is visited. According to the paths
which every ant selects, the corresponding buffer allo-
cation configuration S = {S,,S,,+-+,S,_, | is obtained.

In the selection phase, probability pj; of the nth ant se-
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lecting the jth path in front of buffer i is:

[Tij]a
Z,-F:ilhij}a

where 7 is the pheromone intensity on each path; « is

Py = (23)

a constant.

2.4 Updating

For all the new buffer allocation solutions,
throughput rate E can be calculated and the optimal so-
lutions S

max

can be found among them. Then update the
pheromone intensity 7. The update rule is given as fol-
lows

Ty p X T, + A7, where 1 — p represents the

i
evaporation of pheromone intensity; A7, is the phero-

mone increment in this cycle.
m
AT, = z (A7j;, where A7}; denotes the phero-
n=

mone intensity on the path of the nth ant; m denotes
the number of ants.

n
T

EY"
stants ; £’ is the throughput rate obtained by the nth ant

Atp =y x ( )? x E}, where y and B8 are con-

in this cycle; E}" is the best obtained solution of all the
ants in this cycle.

2.5 Two-opt strategy

In order to prevent the algorithm falling into the
local optimization, some changes are done in the near
optimal solution by the two-opt strategy ;

S;«=S, —land S, « S, +1 (24)

Two buffer locations i and j(i, j € {1,2,-,k —
1} and i # j) are randomly chosen. Then a new buffer
solution can be obtained using Eq. (24). For a pro-
duction line with £ machines, the total number of new
possible buffer configurations is (k= 1) x (k —-2).

2.6 Acceptance probability rule

In order to improve the exploring capability of the
algorithm, an acceplance probability rule of simulated
annealing for updating the best solution is introduced.
After a new solution is generated, firstly the objective
values of old solution S and new solution S’ should be
calculated. If throughput differential AE = f(S') -
f(S) is nonnegative, the new solution is accepted as
the best solution, otherwise it is accepted with the
probability of exp( — AE/T) , where T'is a global time-
varying parameter called the temperature.
2.7 Procedure of the IACO

The proposed TACO is formally described as fol-

lows .

Step 1: initialize the buffer allocation according to
2.2;
Step 2: initialize the pheromone intensity 7, «— ¢
and the pheromone increment A7 «<—0;

Step 3: choose the paths with probability p;, till
the last buffer B,_; according to 2.3

Step 4: evaluate the fitness value according to
DDX algorithm and obtain the best solution according
t0 2.6

Step 5: perform the two-opt strategy according to
2.5;

Step 6: update pheromone intensity 7, of all the
paths according to 2.4 ;

Step 7 if it has led to a local optimal solution, go
to step 2, otherwise go on;

Step 8 : if the termination criterion is not met, ini-
tialize A7; <—0, and go to step 3; otherwise, stop and
record the optimal buffer allocation solution S* and its
throughput rate £~ .

3 Numerical examples

In order to evaluate the applicability of the IACO
algorithm, experiments are conducted with serial pro-
duction line configurations of different total buffer ca-
pacities and machines sizes. The experiments results of
the proposed IACO and ACO algorithm are compared
with those of DC algorithm presented in Ref. [ 11] and
GA presented in Ref. [9]. In all the tests, it is as-
sumed that the processing rate for each machine is one
time unit; the values of the algorithm parameters are as
follows: a =1, p =0.95, y =100, B8 = 15. Table 1
shows the machine parameters of the production lines.
All the experimental studies are programmed in C ++
language and run on a PC with Inter (R) Core (TM)
2-Duo (2.00GHz) CPU using the Windows7 operating

system.

Table 1 Machines parameters

Machine 1 2 3 4 5 6 7 8 9 10
MTBF 20 20 30 22 30 30 20 25 26 30
MTTR 7 10 7 5 5 8 8 9 10 6
Machine 11 12 13 14 15 16 17 18 19 20
MTBF 10 30 30 20 25 45 10 20 12 25
MTTR 3 15 14 9 5 10 4 4 3 7
Machine 21 22 23 24 25 26 27 28 29 30
MTBF 20 25 25 40 30 20 30 22 22 25
MTTR 6 6 8 9 10 7 7 5 10 9
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Table 2 presents the throughput rate, CPU time
and number of evaluated solutions by using different
optimization methods with £ machines (5 < £ <30). It
is shown that the TACO algorithm results in slightly lar-
ger throughput rate and requires less time and fewer
numbers of evaluated solutions to find the near optimal
solutions compared with other optimization methods in
all of cases.

Table 2 Computational results by different optimization methods

i Optimization E . CPU Evalu.ated
method time(s) solutions
5 120 DC 0.648247  148.855 7000
ACO 0. 648406 3.252 315
TACO 0.648617 0.889 150
GA 0. 648429 8.932 896
10 270 DC 0.640968  553.755 17000
ACO 0.641198 68. 181 2960
IACO 0.64131 18.548 1200
GA 0.641123  103.414 3168
15 420 DC 0.626742  748.211 22000
ACO 0.626836  413.683 12430
TACO 0.626887  153.973 4680
GA 0.626796  380. 865 5929
20 400 DC 0. 603021 1732.4 32000
ACO 0.603172  911.905 19040
TACO 0.603229  689.433 10280
GA 0.603178  993.873 14880
25 430 DC 0.595873 2750.6 34000
ACO 0.595997  1838.51 25600
TACO 0.596177  1218.19 17300
GA 0.596095  1595.83 20800
30 590 DC 0.602541  3929.98 40000
ACO 0.604243  2979.46 30600
IACO 0.606567  1596.45 24200
GA 0.604392  3028.17 29100

Fig. 4 shows the convergence curves of the four al-
gorithms for the production lines with five, fifteen and
thirty machines.

It is shown that the throughput rate of near optimal
solution increases as the number of evaluated solutions
increases for all of the DC, ACO, TACO and GA optimi-
zation methods. In addition, the proposed IACO algo-
rithm results in solution quality higher and numbers of
evaluated solutions fewer than the other three methods.

For the same number of machines, the different
total buffer capacity will lead to a different number of
evaluated solutions. Fig.5 shows the effect of the N to-

tal buffer capacity to allocate among the production line
on the number of the evaluated configurations needed

0.65
0.649 |
0.648 +:
0.647
0.646 |
0.645 |
0.644
0.643 -
0.642 §
0.641
0.64
0.639 -+ T - -
0 1000 2000 3000 4000 5000 6000 7000
Evaluated solutions

(a) Five machines

Throughput rate

0.628
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0.624
0.622
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0.616 - : /
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0.612
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0 5000 10000 15000 20000 25000

Evaluated solutions
(b) Fifteen machines

Throughput rate

Throughput rate

4 T T T T T
0 5000 10000 1500020000 25000 30000 35000 40000 45000
Evaluated solutions
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Fig.4 Evolution of the solutions with four methods

25000 - DC =~ ACO —— IACO —— GA

SOOOM
0- Y ; . . .

8 130 180 230 280 330 380 430 480
Total buffer capacity

Fig.5 Total buffer capacity versus number of evaluated solutions
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to converge. This test focuses on a production line with
ten machines, and the total buffer capacity varies from
90 to 450.

As shown in Fig. 5, the number of evaluated solu-
tions needed by the IACO algorithm is lower than those
of the DC, ACO and GA algorithm. In addition, the
increase of the total buffer capacity leads to an increase
of the number of evaluated solutions for near optimal
buffer solutions.

As shown in Fig. 6, for six production lines with
different sizes (from 5 to 30 machines) and different
total buffer capacities, the number of evaluated solu-
tions is increasing as the number of machines increa-
ses. In general, the TACO algorithm finds the best con-
figuration much faster than the DC, ACO and GA algo-

rithm.

45000
40000 4
35000 -
30000 -
25000 1
20000 -
15000 1
10000 1
5000

0 T T T T T 1
0 5 10 15 20 25 30 35

Number of machines

DC =#— ACO =—#— IACO == GA

Evaluated solutions

Fig.6 Influence of the number of machines

Through the experiments analyzed above, it is
easily known that the different number of machines and
total buffer capacities will lead to a different throughput
rate for the production line. As shown in Fig.7, the
throughput rate increases with the increase of the total
buffer capacity when the number of machines is invari-
able. However, when the total buffer capacity is invar-
iable, the throughput rate decreases with the increase
of the number of machines.

=45 machines =~ 10 machines = 15 machines
0.8 - =20 machines =25 machines —®— 30 machines

Throughput rate
o oo o
S

50 100 150 200 250 300 350 400 450 500

Total buffer capacity

Fig.7 Total buffer capacity and number of machines
versus throughput rate

4 Conclusion

In this paper, an TACO algorithm is proposed to
solve the BAP with the objective of maximizing the
throughput rate in serial production lines with unrelia-
ble machines. For the ACO algorithm, some improve-
ments are done to prevent it from local optimization,
such as the two-opt strategy and the acceptance proba-
bility rule. Comparisons with other widely recognized
methods are made to demonstrate the efficiency of our
method. The results indicate that the IACO algorithm
finds the optimal buffer configuration much faster than
the other three approaches for different sizes production
lines. Our future work will also test this approach on
similar problems especially involving parallel ma-
chines.
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