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Abstract
Cross-modal semantic mapping and cross-media retrieval are key problems of the multimedia

search engine. This study analyzes the hierarchy, the functionality, and the structure in the visual

and auditory sensations of cognitive system, and establishes a brain-like cross-modal semantic map-

ping framework based on cognitive computing of visual and auditory sensations. The mechanism of

visual-auditory multisensory integration, selective attention in thalamo-cortical, emotional control in

limbic system and the memory-enhancing in hippocampal were considered in the framework. Then,

the algorithms of cross-modal semantic mapping were given. Experimental results show that the

framework can be effectively applied to the cross-modal semantic mapping, and also provides an im-

portant significance for brain-like computing of non-von Neumann structure.

Key words: multimedia neural cognitive computing ( MNCC) , brain-like computing, cross-

modal semantic mapping ( CSM ), selective attention, limbic system, multisensory integration,

memory-enhancing mechanism

0 Introduction

Cross-modal semantic mapping (CSM) is the key
technological issue of multimedia search engine. The
challenges to the cross-modal semantic computing are
dimensional. Multimedia search engine is an informa-
tion retrieval technique with CSM, which can retrieval
multimodal media that are similar and correlated in se-
mantics from the network multimedia databases. CSM
is a process that addresses how to find semantic objects
from the same modal media similar in semantic and dif-
ferent modal media which are correlated in semantic
based on the dimension reduction of the media fea-
tures.

Essentially, CSM concern about multimedia com-
puting (MC) issues. The MC’ s main objective is to
research methods and theory of information collection,
information representation and information presentation
for vision, hearing, touch, taste, smell and other sen-
sory media. It establishes a general computing theory
and application techniques of transmission, processing,

content analysis and recognition algorithm for represen-
tation media such as text, graphics, images, audio,
MIDI, video, animation and so on. The development
of CSM undergoes three stages: keyword-based text in-
formation retrieval, mono-modal media retrieval based
on content similarity, and cross-media retrieval based
on semantic correlation. The most popular CSM meth-
ods are the text co-occurrence and annotations model,
the cross-media correlation graph, the semantic ontolo-
gy model etc. The most related research focuses on
low-level information described for high-dimensional
indexing, high-level information semantic mining, and
cross-modal and different dimension information corre-
lation, as well as relevance feedback based on human-
computer interaction for retrieval results performance
promotion. Recently, research focuses on deep learning
and statistical learning in CSM semantic-based. The
multi-modal deep learning methods proposed to achieve
cross-modal audio-video classification in Refs[1,2]. In
order to resolve the cross media retrieval task, parallel

field alignment for cross-media retrieval ( PFAR)
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method was introduced in Ref. [3 ], which integrated a
manifold alignment framework from the perspective of
vector fields to solve the semantic gap. Bi-directional
cross-media semantic representation model ( Bi-CM-
SRM) was proposed in Ref. [4], which is a general
cross-media ranking algorithm to optimize the bi-direc-
tional listwise ranking loss with a latent space embed-
ding. A mechanism of cognitive science and neuro-
science system structure is an important reference for
the study of neural computing. It also greatly inspires
multimedia intelligent analysis and information retriev-
al. However, there is difference essence in methods of
research and realization between computer science and
neurocognitive science, due to CSM complexity. So it
is an urgent and important research issue that how to
use knowledge of neurocognitive science to realize effi-
cient models and algorithms.

Now a series of interlocking innovations in a set of
two papers is unveiles to illuminate frameworks and al-
gorithms of multimedia search engineer based on multi-
media neural cognitive computing ( MNCC) in two
ways: cross-media semantic retrieval based on neural
computing of visual and auditory sensations ( CSRNC-
VA) and cross-modal semantic mapping based on cog-
nitive computing of visual and auditory sensations
(CSMCCVA). In this paper, a set of algorithms and
frameworks of CSMCCVA is presented with the function
of cerebrum such as neurocognitive mechanism of visu-
al-auditory collaborative, control structures of selective
attention of thalamo-cortical, emotional control of lim-
bic system and the memory-enhancing effects of hipp-
ocampal, and search brain-like computing based on
neurocognitive function and structure. In second paper,
a set of algorithms and models of CSRNCVA would be
presented which originally sprang from ideal of deep
belief network ( DBN) , hierarchical temporal memory
(HTM ) and probabilistic graphical model ( PGM) ,
and research brain-like computing based on neurocog-

nitive function and structure.
1 Related work

According to related researches of cognitive sci-
ence and neuroscience, cognitive processes and multi-
sensory neurons of the human brain have cross-modal
properties. The human brain is one of the most com-
plex systems in nature, and brain-like computing is a
simulation of human brain function and structure.
Overall, now the brain science fails to achieve break-
through in cerebrum advanced functions. No double,
this causes tremendous challenge to research artificial
brain by computer science. But the authors believe that

it is entirely possible to create brain-like computable
framework based on MNCC, if cognitive computing
(CC) methods"?! based on cognitive information pro-
cessing framework and neural computing ( NC) meth-
ods'""* based on neural information processing mech-
anisms are used, which will be benefit for solving the
problem of MC semantic-based. From the perspective
of MNCC, CSM can be treated as the methods of clas-
sification and recognition of CC.

The CC’ s main objective is to explore the brain
mental thoughts of cognitive information processing, in-
cluding sensation, perception, attention, memory,
language, thinking, awareness etc. , and build brain-
like computational framework and algorithm. Tt needs
learning from experience to find relationship from dif-
ferent things, and to implement reasoned, memory and
computing from logical principles. A theory for cogni-
tive informatics ( Cl) based on abstract intelligence,
denotational mathematics and algebraic system theory
proposed in Ref. [ 13 ] which implements computational
intelligence by autonomous inferences and perceptions
of the brain, and presents a survey on the theoretical
framework and architectural techniques of cognitive
computing beyond conventional imperative and auto-
nomic computing technologies. According to operation-
alized vast collections of neuroscience data by levera-
ging large-scale computing and simulations, the core
algorithms of the brain are delivered to gain a deep sci-
entific understanding of how the mind perceives,
thinks, and acts. The novel cognitive systems, compu-
ting architectures, programming paradigms, practical
applications, and intelligent business machines were
proposed in Ref. [ 14].

The MNCC’ s main objective is to research the
problems of semantic computing and dimensionality re-
duction for unstructured, massive, multi-modal , multi-
temporal and spatial distribution of multimedia informa-
tion processing, to establish a new generation of the
multimedia information processing frameworks and al-
gorithms which system behavior of CC is in macroscop-
ic level and physiological mechanisms NC in micro-
scopic level. Currently, there are two main aspects
which have attracted much attention in brain-like com-
puting. The first is to simulate cognitive function based
on system behavioral, and the second is to research
neural mechanisms based on structures of neurons,
synapses, or local networks. However, there are still
lacks of effective methods about how to build advanced
system of complex function with simple local neural
networks. The researchers have made unremitting ex-
ploration in the mechanisms brain-like computing for a
long time. The main research directions include artifi-
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cial neural network ( ANN), HTM, DBN, PGM and
o0 on.

Since McCulloch and Pitts modeled a simple neu-
ral network using electrical circuits in 1943, after ex-
periencing setbacks, ANN’ s research has returned to
the track of normal development. Rosenblatt proposed
perceptron is an essentially linear classifier in 1958.
Multi-layer perceptron ( MLP) can solve the problem of
non-linear, since using back propagation algorithm it
often suffers from local minima when ANN hidden lay-
ers number increased, and is difficult to solve the
problem of under fitting or over fitting. After that,
many feedback neural networks were developed, such
as Hopfield and SOM network in 1982, ART network
of Grossberg in 1988 etc. For some complex cognitive
phenomena such as associative, memory can be used
feedback neural networks to simulation and interpreta-
tion. Furthermore, some new ANN appears such as

neocognitron' ' | spiking neural network'"®', convolu-

tional network''"”’ | hierarchical model and X ( HMAX)
model etc. Vapnik put forward support vector machines
(SVM) in 1992, which deals with linearly nonsepara-
ble problems using kernel tricks. SVM is a special
double-layer ANN which has efficient learning algo-
rithm. ANN and SVM are classical methods of statisti-
cal machine learning theories. In neuroscience, the
structure of a biological neural network ( sometimes
called a neural pathway) is directed, loop network
with characteristics of feedback and temporal. Neural
circuit is a functional entity of interconnected neurons
that is able to regulate its own spiking activity using a
feedback loop. Training methods of ANN can be divid-
ed into supervised learning, unsupervised learning,
semi-supervised learning and reinforcement learning.
The essence of ANN learning can be understood as dy-
namics problems from system perspective, and can also
be apprehend as optimization problems from functional
aspect. It is needed to simulate not only the cognitive
function but also the structure of the nervous system.
Hinton points out that one cannot solve complex
problems in machine learning only with simple super-
vised learning methods. He proposed that one should
aim to establish a structure by generative models of
neural network, and one should research the ANN af-
fections mechanism of inner representation from exter-
nal environment. Hinton presents a restricted Boltz-
mann machine (RBM) of a double layer structure and
Bayesian belief networks to configure DBN in 2006.
Both cortical structure and cognitive processes are deep
architecture, and a fast deep learning algorithm for
DBN was proposed in Refs[18,19]. To DBN train,

the best results obtained from supervised learning tasks

involve an unsupervised learning component, usually in
an unsupervised pre-training phase. Deep learning al-
gorithm has achieved unprecedented results in many
applications ; Microsoft research found that relative er-
ror reduced to 33% for large-vocabulary speech recog-
nition in Switchboard dataset ™ | and Google labs also
found that accuracy of recognizing object categories in-
creased to 70% more than current best result in Ima-
geNet dataset >

From the probabilistic perspective, ANN is also a
graph model problem. PGM itself has complete theoret-
ical system, and can be used in complex field for un-
certain reasoning and information analysis with probabi-
listic and statistical theories ™. PGM is divided be-
tween the undirected graphs (for example Markov ran-
dom field) and directed graphs (for instance Bayesian
network ). Each node only connects with other limited
nodes in PGM. PGM has properties of locality princi-
ple, sparse and small-word. The most common meth-
ods of approximate reasoning in PGM are Markov chain
Monte Carlo (MCMC) algorithm (such as Gibbs sam-
pling) and belief propagation algorithm .

In contrast, between Hinton’ s deep learning algo-
rithm for DBN with RBM and Hawkins’ s cortical algo-
rithm for HTM'®" | both can be classified by unsuper-
vised learning, and can be stacked to build up feed-
back hierarchy structure. RBM doesn’ t fully utilize the
spatial-temporal locality, but HTM is even more modu-
lar to use spatial-temporal locality and hierarchical
based on belief propagation algorithm of PGM. Both
DBN and HTM can be seen as a special case in mathe-

matical formalism.

2 Visual-auditory information collabora-
tive of semantic mapping

2.1 Visual-auditory collaborative cognitive mech-
anisms

The human central nervous system has white mat-
ter, grey matter, substantia nigra and other tissue. On
the one hand, neocortex’ s function in grey matter is
structurally similar to the processing unit in linear ana-
logue systems and gate circuit in nonlinear digital sys-
tem. On the other hand, long-distance pathways
(LDP) in white matter construct complexes wiring dia-
grams of neural networks of information processing.

Function and structure of the cerebrum are one of
the most complex systems in nature. It is generally
thought that neocortex of cerebrum is an important part
of processing logical intelligent, thalamus is the switc-
hing of selective attention which controls the informa-
tion pass in and out, and hippocampus and the limbic
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system are controllers of memory and emotional. Now,
a variety of methods is used to explore the brain mech-
anism. Neuroscience uses white box and bottom-up
methods to research neural information processing
mechanism of cortical structures and neural pathways.
Cognitive science uses methods of black box and top-
down to analyzed function and phenomenon of cogni-
tive, then builds brain information processing model in
theory. Computer science implements mathematical
logic operation on finite state machine based on Turing
machine model. From MLP model to HTM and DBN,
people never stop exploring the use of cognitive pro-
cessing mechanisms of the nervous system to promote
complex information computing. It is thought that the
neural system and cognitive function belong to isomor-
phic relationship.

Theorem 1 By establishing related computing
model M, it can build mapping between the neural
structures (or processes) @ and cognitive operations
(or functions) :

M. Voo (1)

In addition, there are a lot of connections in the
thalamo-cortical projection systems. There are three
basic types of thalamic nuclei: i) relay nuclei; ii) as-
sociation nuclei; and iii) mnonspecific nuclei. Relay
nuclei receive very well defined inputs and project this
signal to functionally distinct areas of the cerebral cor-
tex. The association nuclei are the second type of tha-
lamic nuclei and receive most of their input from the
cerebral cortex and project back to the cerebral cortex
in the association areas where they appear to regulate
activity. The third type of thalamic nuclei are the non-
specific nuclei, including many of the intralaminar and
midline thalamic nuclei that project quite broadly
through the cerebral cortex, may be involved in general
functions such as alerting. According to the neurocog-
Fig. 1

pathway of visual-auditory information collaborative

nitive mechanism, illustrates neurocognitive
processing in thalamo-cortical projection system which
has 5 layers. Layer 1 is visual-auditory feature detec-
tors such as brightness, edge, tone and loudness.
Thalamus is located at layer 2, which is the center of
information switching. The neocortex consists of 3 lay-
ers. Layer 3 constructs super-column to mimicking pri-
mary visual-auditory sensory cortex. Layer 4 imitates
multi-modal sensory of secondary visual-auditory cor-
tex. Layer 5 simulates association cortex.
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Fig.1 Schematic of thalamo-cortical projection system of the
visual-auditory neurocognitive collaborative information

processing pathway

According to brain’ s structure and cognitive
processes, Fig.2 describes the visual-auditory collabo-
rative cognitive information processing schematic. Rec-
tangular nodes stand for hierarchical probability net-
work for memory, inference, and logic control. The
hexagonal nodes stand for payoff network for in mood,
emotion control and optimize control. There are three
main modules in this schematic. The emotion control
module consists of limbic lobe, insula lobe, basal gan-
glia and thalamus. The visual-auditory perception mod-
ule consists of occipital lobe, temporal lobe and thala-
mus. The visual-auditory cognitive module consists of
frontal lobe, parietal lobe and thalamus.
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(logical inference)

Parictal lobe
(spatial analysis)

t
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Motor) sleep) emotiorn)

Auditory information | Visual infomation
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visual process)

Temporal lobe
(auditory process)

A
Y

Fig.2  Visual-auditory collaborative cognitive information pro-

cessing process schematic
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2.2 CSM framework

Fig. 3 shows the structure of CSM framework. The
principles of hierarchical reinforcement and incremental
training are used to the framework of semantic map-
ping. CSM framework can be decomposed visual-audi-
tory multisensory integration, attention control in thala-
mus, emotional control in limbic system and the memo-
ry mechanism in hippocampal. For the convenience of
description, some concepts and processing are defined
as follows:

) 4 Y
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Fig. 3

Visual-auditory cross-modal semantic mapping frame-

work based on MNCC

Definition 1 Semantic of visual and auditory
media v, and a, are denoted by normalized raw data V
and A. Video V is defined as empty by space-frequen-
cy distribution according to temporal sampling, and A
is defined as time-frequency distribution by short-time
Fourier transform, where a, is a one-dimensional array
and v, a two-dimensional matrix.

{V— FFT(v,) (2)
A = STFT(a,)

Definition 2 Visual temporal-spatial patterns
probability VGN of visual media V and auditory tempo-
ral-spatial patterns probability AGN of auditory media A
can be defined as

{AGN( t,s)

VGN(¢t,s)

P(A) (1 + ASel(z,s))

(3)
P(V)(1 + VSel(z,s))

while VSel and ASel see also Definition 3.

Definition 3 Both visuals objects attention values
VSel and auditory objects attention value ASel are de-
scribed by selection values of thalamus which can be
calculated by temporal-spatial compactness of neighbor-
ing media. The more salient the objects, the greater
probability by thalamus selected. Both VSel and ASel
can be defined as

ASel(t,s) = (1 _G—an)® + (s ‘“5)2) TR ATS
CTS + VTS + ATS

VSel(t,s) = (1 =)+ (s _”3)2) B VTS
CTS + VTS + ATS

(4)

at are spatial and temporal parame-

VTS, ATS and

where vt, vs, as,
ters of visual and auditory respectively.
CTS see also Definition 4.

Definition 4 Both auditory cortex belief ATS, vis-
ual cortex belief VTS and concept of visual-auditory in-
tegration belief CTS are used to describe certainty fac-
tor of cortical column for media objects. It can be de-

fined as
ATS = ARP Z Bel(N) (5)
N =AGNCTS, AM
VTS = VRP Bel(N) (6)

N=VGN,CTS,VM

CTS = ERP(Bel(CM) + ATS + VTS) (7)
where Bel is the belief of cortical column. For VRP,
ARP and ERP also see Definition 5. For meaning of
VM, AM, and CM also see Definition 6.

Definition 5 Visual object emotional control value
VRP, auditory object emotional control values ARP and
visual-auditory object emotional control value ERP are
applied to describe emotion control for reward of
amygdala and orbitofrontal cortex in limbic system.
They can be defined as

gy W (8)
r,=x t_EV

At time ¢, let values of x be ATS, VTS and CTS,
then values of r will be ARP, VRP and ERP in se-

quence.

They influence and control each other, and
compose emotion circuit of amygdala and orbitofrontal
cortex in the limbic system; moreover, they can also
influence hippocampal to temporary memory informa-

tion!26-?"

, where EV is premium value, EW is penalty
value, and EA is emotion value. They can be defined
as

EA,, = Max(«x,)Max(AGN,VGN)
EV, = EV,_, + a(x,_Max(0, Rew - x, (EV, |))

EW

EW = EW,, +,8( ,1(x,_1EVt_1 - —Rew))
t—1

(9)

where Rew is reward value, a and 8 are coefficients.
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Definition 6 Research findings related to the long-
term memory, the presynaptic and postsynaptic activity
of the hippocampus vary with the phenomenon of long
term potentiation ( LTP) and long term depression
(LTD). According to the spike-timing dependent plas-
ticity (STDP) theory, visual objects temporal memory
value VM, auditory object temporal memory value AM
and visual-auditory object temporal memory value CM
in hippocampus are defined as

—x(1 - ERP) ) A1 =0
x(1 = ERP) e A1 <0

where At is the difference between the current time and

Mem = { (10)

the start time of memory object x, when values of Mem
are AM, VM and CM, then values of x are ATS, VTS

and CTS in sequence.

2.3 CSM algorithm of auditory-visual informa-
tion
The cross-modal semantic mapping algorithm
(CSMA) transforms media A and V into a set of CSM
parameters. CSMA includes two steps: pre-learning al-
gorithm in waking state (PLAW) and precisely adjust
algorithm in sleeping state (PAAS).

Algorithm 1 Cross-media semantic mapping
algorithm ( CSMA)

Input: media A and V.
Output; CSM parameters
Procedure ;

(1) Call PLAW to calculate and get initial CSM
parameters such as AGN, VGN, ATS, VTS, CTS,
ARP, VRP, ERP, AM, VM and CM,

(2) Call PAAS to modify and optimize CSM pa-

rameters.

PLAW mimic cognitive function is controlled by e-
motion and memory under the waking state. It is unsu-
pervised training and using bottom-up and to pre-
process input information A and V step by step, and
generate a set of CSM initial parameters. The PLAW
can be expressed as follows

Algorithm 2 Pre-learning algorithm in waking
state (PLAW)
Input: media A and V.
Output: CSM initial parameters.
Procedure .
(1) This step is information preprocess. Accord-

ing to Eq. (3), calculate visual temporal-spatial pat-
terns probability VGN, auditory temporal-spatial pat-
terns probability AGN from visual media V and audito-
ry media A

(2) According to Equation 4, calculate visual
objects attention values VSel and objects attention val-
ue ASel by thalamus;

(3) Set CTS, ARP, VRP, AM, and VM initials
equal 0. Call micro-column information propagation
algorithm ( MIPA) to calculate auditory cortex belief
ATS and visual cortex belief VTS;

(4) Let CM initials equal 0, According to Equa-
tion 7, calculate concepts of visual-auditory integra-
tion belief CTS;

(5) if ATS, VTS or CTS values are similar with
the owner storage pattern values in node of cortical
column, then set AM, VM or CM equal 0; otherwise,
calculate AM, VM and CM according to Equation 10
by ATS, VTS and CTS, then feedback information to

input node cortical columns.

PAAS mimics cognitive function of sleeping state,
when thalamus closes the input information A and V in-
put parameters have AM, VM, CM in framework tem-
porary memory and other CSM initial parameters, and
output VRP, ARP and ERP, and CSM parameters after
the optimization. It is supervised training, and top-
down adjusts and optimizes internal parameters with hi-
erarchical reinforcement learning strategies under the
memory and emotional control, where reward function
of the limbic system is designed by the “principle of
lowest energy” E and “maximizing benefit” M of the
system. That is, rewarding successes and punishing
failure. PAAS process as follows:

Algorithm 3 Precisely adjust algorithm in sleeping
state ( PAAS)

Input: AM, VM, CM in framework temporary memo-
ry and other CSM initial parameters.
Output; VRP, ARP and ERP, and CSM parameters
after the optimization.
Procedure :

(1) Set current time t =0, calculate AM, VM
and CM to mimicking hippocampal memory according

to Equation 10. Then let hippocampal feedback num-
ber is n when time is .

(2) When values for x are ATS, VTS and CTS,
then let values for 7w equal ARP, ERP and VRP in se-
quence. Belief of cortical columns nodes x can be
calculate as follows:

p(x) = (1+M)7 (11)
where T is “temperature” parameter of belief. AE is
“energy” parameter of belief. The information propa-
gation and adjust strategies as follows;

mx — AE, (12)
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(3) According to framework performance, cal-
culate r, by Eq. (8) to get VRP, ARP and ERP.
(4) Calculate benefit of ATS, VTS and CTS as

follows :
M(x,) < M(x,) +alr,, +yM(x,.,) - M(x,)]
(13)

where values for x equal ATS, VTS and CTS in se-
quence;yis discounting coefficient, y e (0,1]. r

L 1s

receive rewards and penalties form x,to x anda is

t+1
learning rate.
(5) Calculate framework whole “energy”

AE, = Zp(xj)xj (14)

7
Search and choose the best optimal decisionsr ™ ;
a’ =argwmaxM (15)

AE,

Vx e ATS, CTS, VIS and VY7 € ARP, ERP,
VRP

If t <n and framework don’t meet the condition,
then let t =¢ + 1, return to step (2), until framework
meet the condition or ¢ reach feedback count n of hip-

pocampal at time ¢.

3 Experiment and simulation

3.1 Experimental data

10 20 30
Time-frequency distribution
of all speech

(@ ®

10 20 30

200 4,

150 15
20
100 ,s

Time-frequency distribution
of all speech with Gaussian white noise

Space-frequency distribution

Since to the nature of audio and video information
has a lot of uncertainty noises, in order to take the
quantitative and qualitative analysis and evaluation to
the modal, 26 letters in the English alphabet are adopt-
ed as train media, that are concepts of 26 English let-
ters, pronunciation of Microsoft TTS Anna of 26 Eng-
lish letters, and image of Chinese Kai font of 26 Eng-
lish uppercase letters. Fig.4 shows all train and test
media; spectral distribution of English letters fonts ( |
and [ll rows in Fig.4) , spectral distribution of English
letters pronunciation ( Il and IV rows in Fig.4) ; train
media time-frequency distribution of all speech ( 'V
row and o column in Fig.4) ; test media time-frequen-
cy distribution of all speech with Gaussian white noise
('V row and B column in Fig.4) ; train media space-
frequency distribution of all fonts ( 'V row and vy col-
umn in Fig.4); test media space-frequency distribu-
tion of all fonts with Gaussian white noise ( V row and
d column in Fig.4). All of the training and testing
media were transformed totaling 333 dimensions after
processing. Where image frequency-domain is 25 di-
mensions and time-domain is 50 dimensions, audio fre-

quency-domain is 111 dimensions and time-domain is

222 dimensions.
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10 20 30

10 20 30
Space-frequency distribution
of all fonts with Gaussian white noise
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of all fonts

Fig.4 Time-frequency and space-frequency distribution of the training media
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3.2 CSMCCVA simulation

(1) Simulation and computing for selection atten-
tion of thalamo-cortical projection system

Due to the temporal-spatial characteristics of visu-
al-auditory neural spiking activity ( for instance dura-
tion of vision is 0. 25s, and duration of auditory is
0.1s), temporal-spatial parameters are set vs = 7pixel
vt =250ms, as =5Hz and at =100ms. Fig. 5 shows the
simulation result for selection attention of thalamo-corti-
cal projection systems according to Eq. (4). When a
temporal-spatial media object is selected by the frame-
work, the neighboring objects at the near time and
space will be inhibited, which is similar to the selec-
tion attention mechanism of temporal-spatial compact-

ness of cerebrum.

ASelTS) VselTs)

P s | g
i i § i ; i 2 ¢
; L 15 ¢
’ A > 1

-1 Sk 05 -1 o . SN
15pixel " oss 18pixel 4

10pixel _~"04s o 10pixel \ e 068
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i

>
Spixel ~~_ -~ 02s Spixel \\’ -
0

N -0.5 —
0 Temporal Spaltal 0 Temporal

|
\
i

Seleclive

o =4 B v &

Selective

P Y

Spaital (;
Simulation and calculate for selective attention of

Fig. 5
thalamo-cortical projection system

(2) Simulation and computing for emotional con-
trols of limbic system

To validate the emotional controls of framework to
learning, let values forae, B, AGN, VGN, ATS and
VTS equal 1, 2,t=20 and CTS =1 ~5.
Fig. 6 illustrates the ERP decaying with time according

set Rew =

to Eq. (8). The figure shows that visual-auditory inte-
gration belief CTS is found to increase with visual-audi-
and then it
can adjust learning and memory ability of framework.

tory object emotional control value ERP,
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Fig.6 Emotional control of the limbic system

computing and simulation

(3) Simulation and computing for memory con-
trols of hippocampus

Fig. 7 illustrates the memory control simulation re-
sults of hippocampus according to Eq. (10). Accord-

ing to the STDP theory, pre-memory can interfere to
the near learning memory, the interfere increases with
the time interval decreases when it’ s waking state. In
addition ,
when it’ s in sleeping state. This shows that the frame-

the memory is exponential decay with time

work meets the basic law of the memory of the cere-
brum.

3065 0 5 10 15 20 25 30 35 40

Time
Fig.7 The memory control computing and simulation
of hippocampus

3.3 CSM result and analysis

To verify the CSM performance of the framework ,
Fig. 8 illustrates CSM result of CSMVACC in 26 letters
test dataset in English alphabet. Gaussian noise has a
great influence on CSMCCVA from Fig. 8,
cy of the framework tends to over 90% of the stable re-
gion when SNR is 30dB. The same low SNR noise has
more influence power to auditory media CSM than visu-
al media CSM. Performance of cross-modal CSM of au-
ditory and visual media are better than CSM of mono-
modal media in the same high SNR background noise,

the accura-

which matches also the cognition law of the cerebrum.
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Fig.8 Gaussian noise effects to CSM performance

of the CSMCCVA

4 Conclusion

In this study, framework of CSMCCVA with
mechanisms of central nervous systems is presented
such as neurocognitive visual-auditory multi-sensory in-
tegration, selective attention in thalamo-cortical, emo-
tional control in limbic system and the memory-enhan-
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cing effects of hippocampal. Then the semantic map-
ping algorithms is given. Simulation results show that
this framework is robust and effective to CSM in experi-
ments of text, speech and script. Only a preliminary
exploration is done with MNCC, the framework’ s pa-
rameters only learn from physiological data, which is
due to neurocognitive mechanisms of the brain com-
plexity. Looking for the future, it is necessary to com-
bine with deep learning theory, probability theory and
modern cognitive findings to improve the relevant algo-
rithms, and build cross-modal semantic search engine

based on MNCC.
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