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Abstract

Under the underdetermined blind sources separation ( UBSS) circumstance, it is difficult to es-
timate the mixing matrix with high-precision because of unknown sparsity of signals. The mixing ma-
trix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing
sparsity,, and the linear aggregation degree evaluation of observed signals is presented which obeys
generalized Gaussian distribution (GGD). Both the GGD shape parameter and the signals’ correla-
tion features affect the observation signals sparsity and further affected the directionality of time-fre-
quency scatter plot. So a new mixing matrix estimation method is proposed for different sparsity de-
grees, which especially focuses on unclear directionality of scatter plot and weak linear aggregation
degree. Firstly, the direction of coefficient scatter plot by time-frequency transform is improved and
then the single source coefficients in the case of weak linear clustering is processed finally the im-
proved K-means clustering is applied to achieve the estimation of mixing matrix. The proposed algo-
rithm reduces the requirements of signals sparsity and independence, and the mixing matrix can be
estimated with high accuracy. The simulation results show the feasibility and effectiveness of the al-

gorithm.

Key words: underdetermined blind source separation ( UBSS), sparse component analysis

(SCA), mixing matrix estimation, generalized Gaussian distribution (GGD) , linear aggregation

0 Introduction

Blind source separation ( BSS) refers to a process
of recovering source signals solely from observed sig-
nals in cases of unknown transmission channel and
source signals, which has been widely applied in areas
such as wireless communications, speech recognition,
image processing and analysis and processing of bio-
medical signals, etc, with more potential application
values in many other fields, therefore, BSS has always
been one of the hot topics for signal processing re-
search'"®!. In some practical applications, the number
of source signals is usually unknown and the number of
observed signals is usually less than that of source sig-
nals, which is defined as the underdetermined blind
source separation (UBSS). As sparse characteristics in
practical applications exhibit in many signals, and
such characteristics can be reflected either in time do-

[6]

main or in transform domain'’’ | most researchers have

focused on sparse component analysis ( SCA )-based
methods for solving the problem of UBSS'™".

In 1999, Lee, et al'™®’ proposed a method of esti-
mating a mixing matrix prior to the reconstruction of
source signals, which is commonly known as the two-
step method. The two-step method is a widely used
method in solving sparse signal separation problems at
present, and high-accuracy estimation of the mixing
matrix lies at the core of this two-step method'"™*'. In
recent years, many new SCA and two-step method-
based algorithms have been proposed for solving UBSS,
including K-means'"*’ degenerate unmixing estimation
technique ( DUET) method'"’ | time-frequency ratio of
mixtures ( TIFROM) algorithm''"®’ | hyper-plane cluste-
ring algorithm''”’ and non-linear projection column
masking algorithm'"®' etc. However, these algorithms
assume that the signals are either sparse or weakly-
sparse in most cases without further investigating the

@D Supported by the National Natural Science Foundation of China ( No. 51204145) and Natural Science Foundation of Hebei Province of China

(No. 2013203300).

2 To whom correspondence should be addressed. E-mail; wjtsjd@ 163. com

Received on June, 16, 2015



HIGH TECHNOLOGY LETTERSIVol.22 No. 1[Mar. 2016

83

sparsity characteristic. In this regard, He, et al'"
proposed a method of measuring the sparsity of the sig-
nals using generalized Gaussian signals, whereby the
properties of the generalized Gaussian signals and the
equal probability density line were used to assess the
sparsity of the signals and achieved certain results.
However, this method requires source signals to be in-
dependent from one another, which is rarely true in
practical applications, the accuracy of the assessment
method is greatly impacted in practical applications.

To achieve precise reconstruction of source sig-
nals, it is necessary to accurately estimate the mixing
matrix. Generally, the mixing matrix estimation mainly
relies on the observation signals’ linear aggregation
characteristic in scatter plots. The higher linear aggre-
gation degree is, the clearer the directivity it presents
in the scatter plot and the more accurate the mixing
matrix estimation is. Therefore, investigating the linear
ageregation degree and enhancing it are particularly
important for the mixing matrix estimation.

Considering usually unknown sparsity and inde-
pendence of source signals in linear mixing UBSS prob-
lems, this work investigates properties of generalized
Gaussian distribution, correlation coefficients and
SCA, and proposes a new algorithm for mixing matrix
estimation in UBSS. This algorithm first assessed the
linear aggregations degree of observed signals with a
combination of sparse degree and correlation coeffi-
cients. Then the specific estimation method was inves-
tigated according to different degrees of linear aggrega-
tions. The research also focuses on estimating mixing
matrix with weak linear aggregation through choosing
coefficients of time-frequency domain, further process-
ing single source points and estimating the mixing.
This method lowers the demands for the signal’s spar-
sity and independence, as well as enables high accura-
cy estimation of the mixing matrix.

1 Problem formulation of UBSS SCA

Without considerations for noise, an instantaneous
linear mixing BSS model can be expressed as

X(t) =A-S(t) t=1,2,--,T (1)
where X(t) = [x,(t), x,(t) -+ ,x,/(t) ]" represents
the observed signals obtained by M sensors; A = R""
is the unknown mixing matrix; and S(¢) = [s,(#),
s,(t),,5,(t)]" is N unknown source signals. The
problem is defined as underdetermined BSS when the
number of observed signals in BSS is smaller than that
of source signals, i. e. when M < N. Sparse compo-
nent analysis (SCA) methods are mainly on the basis
of sparse characteristics of signals in scatter plot to esti-

mate mixing matrix A and then solve the UBSS prob-
lem. Eq. (1) can also be written as
x, (1) Ay @, a1y
: =] ¢ s () + s, () +

x,(t) Ay ayp Ayy

sN(t)

(2)

In UBSS, the source signals are not only required

to be independent of each other'™’ but also generally
assumed to be strong sparse signals, which means at
any time ¢, there exists only one source, and then

Eq. (2) can be formulated as

x,(8) ay,
: = sj<tk) (3)
x, (t,) Ay
And Eq. (3) can be deduced as
x,(8,) _ x, () e — xy(t,) (4)
ay; ay ay,

It can be seen from Eq. (4) that the source sig-
nals are independent and sparse, the direction of the
straight line is determined by the /" column of the mix-
ing matrix A. If mixing matrix A is column full rank,
i. e. column vector is not correlated, the column num-
ber is equal to the number of source signals and it will
present distinct direction in scatter plot. Nowadays, re-
searchers have investigated some approaches to esti-
mate the mixing matrix, such as potential function, K-
means clusters, fuzzy clusters which are mainly accord-
ing to the linear aggregation in scatter plot. If the de-
gree of linear aggregation is strong which results in dis-
tinct direction and then a high-accuracy estimation of
mixing matrix is achieved by directly using clustering
algorithm. In reality, the independence and the source
signal sparsity are unknown, so is the degree of the lin-
ear aggregation. Most of the existing algorithms are as-
sumed that the signals are strong or weak sparse, how-
ever they do not discuss the aggregation degree and its
effect to the estimation accuracy of mixing matrix.

This study focuses on two aspects: one is how to
measure the sparsity degree for given signals, the other
is how to improve the sparsity to estimate the mixing
matrix. So a method to evaluate the observation signals
sparsity and further estimate the mixing matrix is pro-
posed. The related theories and processing steps now
are introduced as follows.

2 Linear aggregation degree measure based
on GGD and correlation coefficient

It’ s obvious that the linear aggregation clarity di-
rectly influences the estimation accuracy of mixing ma-

trix; therefore it’ s necessary to study the linear aggre-
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gation characteristics and the factors.

Many physical signals statistically obey or approxi-
mately obey generalized Gaussian distribution (GGD) ,
which makes GGD signals have attracted much atten-
tion in signal processing field. This paper investigates
the important parameters of GGD and the correlation
coefficients, whereby it puts forward to a new measure-
ment of signal linear aggregation characteristic which is
helpful to estimate mixing matrix accurately.

Generalized Gaussian distribution is a kind of
symmetric distribution whose special cases are normal
distribution and Laplacian distribution, and its limit
forms are & function and uniform distribution. The

probability density function (PDF) of the GGD family

. . [21
is shown in"*"

fxspaa,B) = [ Jexp{ - [LE=tlqey

J

2BI'(1/a) B

—o <x <o (5)
where x, u, o >0 and 8 >0 represent variable, mean,
shape parameter and scale parameter respectively.
= je_' t""'dt is the gamma function. The PDF

0

of GGD family is determined by shape parameter o and

I'(m)

scale parameter 8:« determines the PDF’ s contour and
is relevant with PDF’ s attenuation speed whereas 8 de-
termines PDF’ s wave crest width of GGD.

Parameter « is calculated as

2
1 I (2/Ol)
= 6
= G r(/a) (6)

Generally there is certain relationship between « and 8

in the following:
1
B=clI'(l/a)/T'(3/a)]? (7)
From Eq. (7) it
concludes that the GGD probability density function ac-

where o is the standard deviation.

tually is determined only by shape parameter a. Studies
the GGD

probability density function is approximate to 8 function

show when « infinitely approximates zero,
which indicates a strong sparse signal ; when « is equal
to 1, GGD is degraded into Laplacian distribution,
which is a sparse signal; when « is equal to 2, GGD is
further degraded into Gaussian distribution and signal’
s sparsity becomes unapparent; and when a approaches
+ o, GGD tends to uniform distribution infinitely,
Therefore ,

the shape parameter « is, the sparser the signal is and

which is a non-sparse signal. the smaller
the stronger the linear aggregation is.

One of requirement of UBSS is independent of
each other, actually it is difficult to ensure the signals
are completely independent in practical situations. The
signal linearity degree is influenced not only by sparse
linear extent but also by the signal’ s independence.

The traditional independence between signals is defined
by the probability density function. However this work
studies the signals correlation combined with the entro-
py of information theory, and defines center entropy on
the basis of the center of the signal related to the inde-

2]

pendence and the entropy measure' ™. Center entropy

is defined as the center of the correlation:

LZ G,(x; =)
1 &2
ﬁz ;GU(% - ¥) (8)

where X, Y represent any two signals; N is the signal

length; G, Gaussian kemel o = o [4N7'(2d +
1)

ard deviation). Further combined with signal’ s corre-

u, (X,Y) =

(d is dimension signal; o the signal stand-

lation, the center corr-entropy is defined as the meas-
ure of independence as

y(X,Y) = max(| w(X, V) I, u(-X,Y)1)

(9)

The center corr-entropy 7 is a large value, which
means that the relevance of the signals is weak and the
signal is of stronger independence; similarly vy is a
small value, which means that the signals relevance is
stronger and the signal is of weaker independence. If
the signals have stronger independence, its center corr-
entropy is near to 1; and on the contrary weak inde-
pendence means center corr-entropy near to 0.

In summary, the center corr-entropy of signals is

which

means that the linear aggregation degree of signals is

bigger and the shape parameter is smaller,

stronger and there will have clear directional lines in
scatter plot. The center corr-entropy of signals is smal-
ler and the shape parameter is bigger, which means
that the linear aggregation degree of signals is weaker
and the scatter plot showing directional blur even with-
out showing directionality. Therefore, shape parameter
o and center corr-entropy y can be used to measure

signals linear aggregation degree.

3 Mixing matrix estimation under weak
linear aggregation

Mixing matrix A can be estimated directly using
the clustering method with the clear line direction of
observation signals. On the contrary, A is estimated
with large errors even can not be estimated with weak
direction. Generally, many actual signals are not
sparse in time domain and there appear certain but not
enough sparsity in the transformation domain which re-
sults in obscurely linear aggregation. This study propo-

ses to detect and choose the transformation coefficients
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of time-frequency domain and it results in strong linear

aggregation.

3.1 Enhance linear aggregation based on linear
coefficients
Eq. (1) is processed by short-time Fourier trans-

form (STFT) and it obtains the following:

X(t,k) = iaiSi(t,k) (10)

Assume that only source signal s, (#,,k,) is non-
zero on a certain (t,,k,) in time-frequency domain

while the other signals are all zero, then there exists:

[, (L k)
X(t k) =

Ly (2 ,k)

@y o ay
s (ty,ky)

= | @ [ ]
0

- Ay

[ays, (¢ k)

= : (11)
Lay,s, (1, ,ky)

Respectively dividing the real and imaginary compo-
nents of any two observed signals in Eq. (11) and the
following ratio is obtained :
Re[ X, (1, ,k,) ] _ Im[ X, (2, ,k,) ] _ @
Rel:Xj(tl k) - lm[Xj(tl k)] - aji
wherei e M,j € M, and i # j. It can conclude that

(12)

the ratios a,,/a;, between the real and imaginary compo-
nents of any two observed signals are equal and at the
same direction with column vector of mixing matrix.
Similarly in other case of only single source signal, the
ratios between the real and imaginary components of
any two observed signals would also be equal.

More generally, it is assumed that the ratio of the
i" column of the mixing matrix A is equal to the ratio of
coefficients which aggregates on the i" column of mix-
ing matrix in time frequency point (i,,k,). So
Eq. (13) is got:

Xy (ty,ky) _ ayS;(t;,ky;)

X, (k) S (1,,ky)

The simplest case of Eq. (13) is that only one

(13)

signal source presents while other source signals are in-
active or offsetting each other at point (,,k,) Eq. (13)

can be written as

Re[ X, (15,k,) ] _ Im[ X, (1,,k,) ] _ ay; (14)
Re[ X, (1,,k;) ] Im[ X, (1,,k,) ] ay;
It can conclude from Eq. (14) that the ratio of

coefficient real component is equal to the imaginary

component radio as well as the ratio of mixing matrix
corresponds column. Consequently, it can define these
coefficients as linear coefficients which have strong lin-
ear aggregation in the time-frequency domain and can
exhibits distinct directionality in the scatter plot. This
work enhanced linear aggregation degree based on the
linear coefficients.

However, actually the values of Re[X,(t,
k) ]/Re[ X, (t,k) ] and Im[X;(¢,k) ]/lm[ X, (¢,k) ]
in Eq. (12) are not completely equal and certain dis-
crepancies exist between these values. Considering the
actual feasibility, threshold value @ is set and

Eq. (13) can be expressed as
Re[Xi(L,k)J/Re[X/-(I,,k)J —Im[XL-(I,,k)]/Im[X/-(l,k)] <
Re[ X;(t,k) J/Re[ X;(¢,k) ] + Im[ X;(1,k) ]/Im[ X, (¢,k) ]
(15)

where @ is an empirical value with a range of (0,

0. 1) which is modified according to the signals. After
linear coefficients process, the linear aggregation of ob-
servation signals is enhanced.

3.2 Mixing matrix estimation
Assume that M = 2, these linear coefficients are
subject to unitization processed by Eq. (16) and a set
U is obtained:
X(ty,kyz)

Utz k) = X ) s

(tZ’kZ> e (),
(16)

where X(i,,k,) is the linear coefficient selected from
time-frequency domain, and (2, is a set of all selected
linear coefficients. These vectors in {2, are all unit vec-
tors, and by further calculating the ratios among the
vectors it obtains a set H:

ho= Uk g et ()
) uy (5, k)

The set H is classified by clustering method and if
any two h,, h, in H are equal or approximately equal,
they are classified into same category.

The conventional K-means algorithm is sensitive to
initial clustering centers, whereby differences in cluste-
ring centers would greatly affect the clustering results.
Therefore, the optimization of initial clustering centers
plays a very important role in K-means algorithm. The
initial clustering centers are determined by the centers
of selected areas which have high data density of set
H. The conventional K-means clustering algorithm is
then used to classify these data in set H. Denote the
positions of the same category as {C, | n e N{, it’s
correct that the positions of the same category in set H
correspond to the same category positions in set U. The
mean value h of each category, i. e. the mean slope, is

calculated by
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1
h, —mz‘hcn (18)

where sum(C,) is the number of all vectors in the n"
category , z h¢, is the sum of all elements in the n"

category. The estimation of mixing matrix column vec-
tors is achieved by

A

a =

n

[ cos(arctan h,) ,sin(arctan h,) ]'n e N

(19)
4 Algorithm simulation and result analysis

The proposed method is used to process three dif-
ferent cases which belong to UBSS and the simulation
results and analysis are presented. The normalized
mean square error ( NMSE) is applied to evaluate the
mixing matrix accuracy and the comparisons with other
methods are also presented.

The normalized mean square error is defined as

JA-A| )
1A

where A is the estimated mixing matrix, and A is the

NMSE:E( (20)

original mixing matrix.

(1) Strong linear aggregation, i. e. shape param-
eter o and correlation coefficient r are small .
2 and N = 6, which

means six source signals and two observation signals.

Consider the case: M =

The six source signals are intercepted from flute acous-

tical signals of Bofill” s study'*’

and sampling points
are 32768. Mixing matrix A is generated randomly,
and its column vectors are normalized as:
A =
0.1016 0.5045 0.4313 0.7845 0.0594 0.9121
-0.9948 -0.8634 0.9022 0.6202 0.9982 -0.4099

The two observation signals are generated in ac-
cordance with Eq. (1) and shown in Fig. 1.

2
) . . .
0 1 2 3
sampling points

p—————

0 1 2 3
sampling points % 10*

Fig.1 Waveform of observation signals in the time domain

amplitude

amplitude
S W

Obeying the generalized Gaussian distribution,
shape parameter o and correlation coefficient r of two
observation signals are calculated in the time domain
(TD) and time-frequency domain (TFD) , respective-

]

ly, and the result is shown in Table 1.

Table 1  Shape parameter and correlation coefficient
shape parameters ~ shape parameters  center corr-entropy
ain TD o in TFD r
2.2150 0.0820 0.000912

Table 1 shows that shape parameter o is greater
than two in TD and becomes small in TFD, and corre-
lation coefficient of the two observed signals is small.
Therefore it concludes that observation signals will
present strong linear aggregation and distinct direction-
ality in time-frequency domain. Fig.2 illustrates the
conclusion: (1) is scatter plot of transformation coeffi-
cients in TD and (2) is scatter plot of linear coeffi-
cients in TFD.

4
-2 -1 0 1 2
X1
(a) Scatter plot in TD
4000
2000 ¢ ., '
Ly - y e -
20 e
~ » ':[ * * *e
2000 | i
4000 - : N
4000  -2000 0 2000 4000
X1

(b) Scatter plot in TFD
Fig.2 Scatter plots of source points in TD and TFD

Fig. 2 verifies the conclusions and therefore mix-
ing matrix A can be estimated directly using improved
K-means clustering algorithm and it can obtain the esti-
mation result ;

A=
[ 0.1026 0.5050  0.4309 0.7840 0.0584 0.9118 ]
-0.9947 -0.8631 0.9024 0.6207 0.9982 -0.4106

The estimation error was min ||Ap — A ||, =

0.00044 , where p € P and P is a unit substitution

2] In order to assess the matrix esti-

mean value set
mation accuracy by the proposed algorithm, the mixing

matrix is estimated by the method mentioned in
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Ref. [23] and the result is shown as follows:

A =
[ 0.0882 0.5225 0.4205 0.7934 0.0724  0.9026 ]
-0.9961 -0.8526 0.9073 0.6088 0.9974 - 0.4305

Calculate normalized mean square errors of A by
the proposed algorithm which can be named as Lcluster
algorithm and A by Bofill” s algorithm' ' | respectively,
the comparison is shown in Fig. 3.

301 —e— Leluster algorithm
|| —&— Bofill potential function the algorithm

-706\8\9/6/6\(-)

1 2 3 4 5 6
The column number of the mixing matrix A

Fig.3 NMSE comparison of Bofill” s and Leluster algorithm

NMSE
&
S

Fig. 3 shows that NMSE of estimation by the pro-
posed algorithm is significantly smaller than that by Bo-
fill potential function algorithm.

(2) Weak linear aggregation, i. e.
parameter o and small correlation coefficient r;

Consider the case;: M = 2 and N = 4, i. e. four
The four
source signals are actual speech signals from http://
arctic/. The sam-

large shape

source signals and two observed signals.

www. speech. cs. cmu. edu/cmu
pling points of each source signals are 35920, and the
mixing matrix is

[O. 7635 0.5029 -0.1667 -O0. 9039]
0.6458 0.8644  0.9860 0. 4277

The two observation signals are generated accord-

ing to Eq. (1) and shown in Fig. 4.

1
9
2
-g 0
-1 . . .
0 1 2 3 .
sampling points X 10
Q
]
k=
|
g
0 1 2 3 §
sampling points x 10

Fig.4 Waveform of observation signals in time domain

Obeying the generalized Gaussian distribution,
shape parameter o and correlation coefficient r of two
observation signals are calculated in TD and TFD, re-
spectively, and the result was shown in Table 2.

Table 2 Shape parameter and correlation coefficient

shape parameter correlation coefficient

ain TFD r
0.4530 0.0973

shape parameters
ain TD

1.9200

It can be seen from Table 2 that the correlation
coefficient is small, while the shape parameter is not
sufficiently small both in TD and in TFD, So it is de-
duced that the signals will present weak linear aggrega-
tion in the TFD. Fig.5 includes scatter plots of two ob-
servation signals in TD and TFD, respectively.

-1 -0.5 0 0.5 1
X1

(a) Scatter plot in TD

(b) Scatter plot in TFD
Fig.5 Scatter plots of source points in TD and TFD

Fig.5(b) shows that the scatter plot of observa-
tion signals presented obscure directivity in TFD and
the conclusion is verified by Fig.5. The linear coeffi-
cients in TFD are selected according to Eq. (16),
wherein w was selected as 0.025. The scatter plot of
linear coefficients is shown in Fig. 6.

These linear coefficients are used to estimate mix-
ing matrix in accordance with the proposed method in
Section 4. 2 and obtain the estimated value of mixing

matrix :
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10
5t % Y
FE T
* oy *
g 0 - hd .
Sro e :
-10
-10 -5 0 5 10
X1

Fig. 6 Scatter plot of linear coefficients in TFD

A- 0.7628 0.5019 -0.1656 -0. 9034]
0.6466 0.8649 0.9862 0.4288
The estimation error is min || Ap - A, =

0.0011, which indicates that estimation result is rela-
tively accurate using the proposed algorithm. Under
this circumstance, the mixing matrix can not be esti-
mated by Bofill” s algorithm. In order to assess the es-
timation accuracy Lecluster is compared with another

method in Ref. [25] called V. G. Reju algorithm. The

NMSE comparison result is shown in Fig. 7.

-55 : :
—©— Lcluster algorithm
50 —»%— V.G.Reju algorithm 3
-60%
iy \”\/
:
-65
o oD
o— = =
-70
1 2 3 4

The column number of the mixing matrix A

Fig.7 NMSE comparison with Leluster and VG. Reju algorithm

Simulation shows that NMSE of estimated mixing
matrix by proposed algorithm is significantly smaller
than that by V. G. Reju algorithm.

5 Conclusions

This study investigates the mixing matrix estima-
tion under UBSS by studying the linear aggregation
characteristic and correlation effect of observation sig-
nals. In order to accurately estimate the mixing matrix
with unknown sparsity, the relationship between shape
parameter and sparsity of observation signals following
the generalized Gaussian distribution is studied. The
effects of shape parameter and correlation coefficient of
the observed signals on the linear aggregation character
is focussed, and then the specific processing algorithms
aimed at different linear aggregations are adopted. The
mixing matrix can be estimated directly using the im-

proved K-means algorithm if the linear aggregation is
strong; on the contrary, mixing matrix is estimated by
selecting the appropriate single source coefficients
based on linear coefficients before applying the im-
proved K-means. Experiment results show that the pro-
posed method can effectively estimate the mixing matrix
with different sparsity while retaining the characteristics
of low computational complexity and high estimation
accuracy.
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