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Abstract
Mobile robot systems performing simultaneous localization and mapping (SLAM) are generally

plagued by non-Gaussian noise. To improve both accuracy and robustness under non-Gaussian meas-

urement noise, a robust SLAM algorithm is proposed. It is based on the square-root cubature Kal-

man filter equipped with a Huber’ s generalized maximum likelihood estimator ( GM-estimator). In

particular, the square-root cubature rule is applied to propagate the robot state vector and covariance

matrix in the time update, the measurement update and the new landmark initialization stages of the

SLAM. Moreover, gain weight matrices with respect to the measurement residuals are calculated by

utilizing Huber’ s technique in the measurement update step. The measurement outliers are sup-

pressed by lower Kalman gains as merging into the system. The proposed algorithm can achieve bet-

ter performance under the condition of non-Gaussian measurement noise in comparison with benchmark

algorithms. The simulation results demonstrate the advantages of the proposed SLAM algorithm.

Key words:; square-root cubature Kalman filter, simultaneous localization and mapping

(SLAM) , Huber’ s GM-estimator, robustness

0 Introduction

Simultaneous localization and mapping (SLAM)is
a fundamental issue in the autonomous robot systems
designed to realize more complex and advanced tasks,
such as underground mining, planetary exploration, and
disaster rescue. The objective of SLAM is to incremen-
tally build a map of the unknown environment while
concurrently using this map to localize the robot''’.

The nonlinear discrete-time state-space model was
typically formulated in the SLAM problem with Gaussi-
an noise. The most popular filter implemented for
SLAM is extended Kalman filter (EKF)?.
EKF approach for SLAM tends to be inconsistent due to
The sigma-

However,

the accumulation of linearization error.
point Kalman filters ( SPKF) which achieve second-or-
der or higher accuracy have been proven to be far su-
perior to standard EKF. Among the family of SPKF-
class estimators, the unscented Kalman filter ( UKF)
and the cubature Kalman filter (CKF) have shown the
capability to reduce linearization error effectively, and
therefore are used in SLAM algorithms**'. Especially

the third-order cubature rule of the CKF is claimed to
be more theoretically justified and more accurate in
mathematical terms than the unscented transformation
of the UKF"'.

However, the distribution of measurement noise in
practical systems may deviate from the commonly as-

6 . . .
1'°). This non-Gaussian noise

sumed Gaussian mode
model is usually characterized by thick-tailed probabili-
ty distributions and randomly appearing outliers, which

[7] , :
or are In-

may originate from glint noise of reflection
duced by unanticipated environment turbulence, tem-
porary sensor failure, and incorrect modelling'®'. To
deal with non-Gaussian noise model in the SLAM im-
plementations, several methods have been proposed.
For example, the Rao-Blackwellized particle filter
based Fast SLAM"®' estimated the state posterior of ar-
bitrary probability distribution by a finite number of
particle samples. However, the algorithm will be com-
putationally intensive in situations where the state vec-

tors are high-dimensional. The H_ -filter based SLAM

") are also able to estimate the state per-

algorithms'*
turbed with non-Gaussian noise by treating the noise as

unknown-but-bounded quantities. However the algo-
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rithms are prone to be diverged from in the presence of
random outliers.

In essence, the conventional Kalman type filters
belong to the recursive minimum /,-norm or least mean-
square technique, and the performance of the filters
quickly degrades in the presence of outliers and thick-
tailed noise. In contrast, Huber’ s GM-estimator''" is
an estimation technique that gains robustness by opti-
mizing a cost function represented in a combined mini-
mum [, -and /,-norm. Using this estimator, the effect of
the outliers is suppressed by down-weighting the nor-
malized measurement residuals that are larger than a
given threshold. Huber’ s method has also shown its
high robustness by integrating it into various Kalman
type filters' ">/

Taking the advantage of square-root cubature
rule’ s numerical stability, a robust SLAM algorithm
based on SCKF is proposed. Moreover, to accommo-
date the non-Gaussian measurement noise model, Hu-
ber’ s GM-estimator is further introduced to improve
the measurement update for each revisited landmark.
Simulation results are provided to illustrate the effec-
tiveness of the proposed algorithm in the complex sce-
narios with non-Gaussian measurement noise models.

1 Problem formulation

Consider the general discrete-time nonlinear SLAM
system with the process model and measurement model

x, = f(x, ) v

2 :h<xk) +w, (1)
where f( + ) and h( - ) are specific known nonlinear
functions; x, = [x,,, m,] is the state vector consis-
ting of the robot pose x, , and varying-size map of land-
mark m, at time step k; u, | is the control input of the
proprioceptive sensors; z, is the measurement obtained
from the on-board sensors; v, ; and w, are additive
process and measurement noise, respectively. The noi-
ses are assumed to be mutually independent Gaussian
random variables with zero mean and covariances Q, ,
and R, , respectively.

In this study, the third order spherical-radial cu-
bature rule is utilized to approximate the nonlinear
Gaussian integral with a set of 2V (N is the dimension-
ality of the state vector to be estimated) equally weigh-
ted cubature points. The set of cubature points is de-
termined by {£;, w;| , where £, is the i-th element and

w, is the corresponding weight factor;
/Ne,, i=1,- N
fi =
— /Ne, y,i=N+1,- 2N

(2)

where e, denotes a unit vector in the direction of the co-
ordinate axis i; the weight factor is simply calculated as

w for all points.

-1
Y
2 SLAM based on square-root cubature rule

The objective of the SLAM algorithm is to keep
the system state estimate up to date by recursively
evolving with the time update, measurement update
and new landmark initialization steps. The square-root
cubature rule is applied to all the SLAM steps to propa-
gate the square-root factors of the predictive and poste-
rior covariance directly. The complete procedure for
the SCKF based SLAM ( SCKF-SLAM ) is derived in

this section.

2.1 Time update step

When the robot moves according to the control
signals from the proprioceptive sensors, the robot state
has to be predicted based on its prior estimate of the
state and the control inputs. As the process noise is
non-additive, the robot state vector and its covariance
squared root factor are required to be augmented as

£, = [xA:)_l]’ S, = Sg-l S(:)k_]] (3)

where S, _, is the upper Cholesky factor of P,_, such that
P,_, =8S,.S, and S, .41 is the upper Cholesky factor
of @, , withQ,_, = S(T)V,HSQ,H. X, , and P,_, are the
prior mean and covariance matrix of the robot state, re-
spectively.

The augmented state vector and its covariance
squared root factor are used to determine a set of 2V,
cubature points which are calculated by

X =8a& + %, =12, N (4)
where N, is the size of the augmented state vector.
Each cubature point is propagated through the process
model :

X = (X wy), i=1,2,- N,

(5)
where u,_; is the control input. Note that the dimen-
sionality of each propagated cubature point is the same
as the original robot state vector, rather than the aug-
mented one. The predicted robot state mean is esti-
mated by

2N,

X 1 .
Xprr = N ZXi,klk—l (6)
|

i=1
The square-root factor of the predicted robot co-
variance matrix is found by performing the QR decom-
position



40

HIGH TECHNOLOGY LETTERSIVol.22 No. 1IMar. 2016

Sklk—l = qr(Xka,l) (7>
where y,,_, is a column matrix and each column
X wi is calculated as

(X b 21,2, 2N

| P R
= [Z<X;, e~ Xs) Jiciae o,

(8)

2.2 Measurement update step

Each time the robot revisits the landmarks that
have already been mapped by means of its on-board
sensors, the measurements are exploited to correct the
estimate of both the robot state and the map of the
landmarks. Landmark measurements are processed se-
quentially with a serial of update steps.

The cubature points with respect to the current
state are evaluated by

Xiwier = Swmé + %0, =12, 2N,

(9)

where N, is the size of the current state vector, £,,,_; is
the predicted state vector, and S,,,_; is the upper Chol-
esky factor of the corresponding predicted covariance
matrix.

A specific landmark measurement depends only on
the predicted robot pose and the particular landmark’ s
state, which are parts of the state vector. The propaga-
ted cubature points are evaluated with the measurement
model by

Zifklk—] = h(Xi, Kl k-1 ) , 1= 1,2,"',2N2 (10)

The predicted measurement is estimated as
2N,

Lpip-1 = N ZZL',I:IAA—I (11)
2

i=1
The square-root factor of the innovation matrix is
found by performing the QR decomposition ;
Sz:, k-1 — qr( [Zklk—l SR,kJ ) (12)
where S, is the upper Cholesky factor of R,, and
Z,,_, is a column matrix with each column calculated

as
[Z, i Jici o om,
1 . 5
= [ZN (Zi,klk—l - Zuia) ]i:1,2,---,2N2
2
(13)

The cross-covariance matrix is obtained by matrix
multiplying :

.

P.u, Mot = Xuia1Zppo (14)
where y,,,_; 1s a column matrix with each column calcu-
lated as

[Xi, k-1 ] i=1,2,- 2N,

1 o
= [2N (Xi, k-1 — X1 ) :li:l,Z,-u,ZNz
2

(15)

The Kalman gain of the SCKF is calculated by

K = (sz,k\k—l/SzT:,klk—])/Szz,klk—l (16)

The corrected state vector and corresponding
square-root factor of the covariance matrix are finally
obtained by

B =X + K(z = 20,) (17)

Spr = qr( [Xk\k—l -KZ,, KSR,k] ) (18)

2.3 New landmark initialization step

Landmark initialization happens when the robot
detects a number of landmarks for the first time and de-
cides to incorporate them into the map. The robot state
vector and its covariance square-root factor are aug-
mented with each new landmark measurement .

f;;:[xk],s;;:[sk 0] (19)

Zik 0 Sk,
where z; , is the measurement of the j-th newly detected
landmarks. x, and S, are the robot state vector and the
upper Cholesky factor of the robot covariance matrix,
respectively.

The expected position of the new landmark is cal-
culated analogously using the cubature rule. A set of
2N, cubature points is calculated to represent the prob-
ability density of the augmented state ;

X, =8¢ +%,1i=1,2,-72N, (20)
where N, is the size of the augmented state vector.
Each cubature point is propagated through the nonlin-
ear inverse measurement model as

X, =h'(X,),i=1,.2,72N, (21)
where ™' denotes the nonlinear inverse observation
function, which transforms the new landmark measure-
ments into the landmark coordinates in the global
frame.

The predicted mean of the augmented state is cal-
culated by

203

oY 1 * .
xk = QW;X"’I“’ L = 1,2,"',2N3 (22)

The square-root factor of the corresponding covari-
ance matrix is also obtained with the QR decomposition
Si = ar(xi) (23)

where y, is a column matrix and each column y ", is

calculated as
06 Dimvinan = Ly (Kl = 20 Tiaan
(24)
3 Huber-based SCKF SLAM
This section presents the application of Huber’ s

GM-estimator to improve the robustness of the SCKF-
SLAM. The measurement update has to be recast as a
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linear regression formulation, where the measurement
equation is combined with a virtual linear state transi-
tion equation. The virtual equation demonstrates the
linear relationship between the true state and its pre-
dicted estimation ¥,,_, obtained from the time update
step :

B =X =04 (25)
where §,,,_, is an unknown error vector.

The nonlinear measurement function is also rewrit-
ten as a linear form by approximating

Z, = Zy +H(x, = %,,.,) (26)
where measurement matrix H, is calculated by the pre-
dicted state covariance matrix and the cross-covariance
matrix :

H, = (Plglk—lpxz,klk—l )T (27)

By combining Eqs (25) and (26) together, the
linear regression equation can be obtained as

[Zk = Zhin +kak\k-1] _ [H;,] [ r ]

) = X, +
X4 k-1 1 Ot
(28)

The error covariance matrix with respect to the far
right component of the above equation is given by
E(ee") = [I;" PO | = 8.8t (29)

K k-1
where S, is the Cholesky factor of the error covariance.

Several nominal matrices are defined through left
multiplying each component of Eq. (28) by the inverse
Cholesky factor S; ' :

Vi = S/;I[Zk

= 2y + HEy k-l] (30)

Xp ko1

(31)

M, = s,;l[Hk]

1
r
& =5"[." | (32)
O
The linear regression equation can be transformed
to a compact form as
Yo =Mx, +§, (33)
Huber’ s GM-estimator is used to find the solution
to this linear regression problem, by minimizing the

cost function as
Ny +dim(zy)

Z p(ri)

- (34)

where p( +) is a symmetric, positive-define score func-

x, = arg minJ(x,) = arg min
Xk

tion with a unique minimum at zero, dim(z,) is the
size of a single landmark measurement, r; is the i-th
component of the residual between observation y, and
its fitted value M, x, , i.e. ,r, = [M,x, -y, ]. The so-
lution of Eq. (34) is determined by the following im-

plicit equation
Ny +dim(zy)

Z lﬁ(l‘i)

=
where the derivative 4 (r,) = dp(r;)/dx is known as

the influence function. By defining a weight function

or;
x 0 (35)

w(r;) = (r;)/r; and an associated diagonal weight
matrix W = diag[ w(r,) ], it can be written in a matrix
form as

MW(Mx, -y,) =0 (36)

This equation can be solved by using the iterated
reweighted least-square algorithm, where the weight
matrix W is recalculated in each iteration and is used
in the next iteration. This process is represented as

£ = (MW M) MWy, (37)
where the superscript j denotes the iteration index. The
initial value of the weight matrix W is given as an iden-
tity matrix. And then the initial state estimation £ is
the least-square solution ;

20 = (M;M,)"'M,y, (38)
When Eq. (37) is converged, the final value of the
corrected estimation of the state vector is achieved and
the corresponding corrected covariance matrix is com-
puted with the converged weight matrix

P, = (MWM,)" (39)

Finally, the corrected square-root factor of the co-
variance matrix is achieved by performing the Cholesky
factorization :

Syr = GHOL(Py,) (40)

The score function of the GM-estimator should be
chosen to yield robustness against non-Gaussian meas-
urement noise. Note that if the score function is select-
ed as a [,-norm one, i.e. , p(r,) =r./2, the solution
to the linear regression problem is equivalent to that of
the standard Kalman type filters. A number of robust
score functions have been proposed such as the Huber

[15]

function, thelogistic function'”' and Hampel’ s rede-

scending function' "',
The pseudo-code of the proposed Huber based
SLAMalgorithm ( HSCKF-SLAM ) is summarized in

“Algorithm 17.
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Algorithm 1 HSCKF-SLAM Algorithm

Require ; Initial robot state mean x, and covariance P,

1. Main Loop:

2. fork =1,2,---,Tdo
3. Time-update ;

4

Compute the predicted robot pose £, ;,_, and its Cholesky factor of

the covariance S, ,,_, via (4) = (8);

5. if new measurements received then

6. Perform data association algorithm

7. end if

8. Measurement update ;

9. for measurements of revisited landmarks do

10. Compute the cross-covariance matrix P,_,,,_, via (9)-(15);

11. Compute the corrected system state £,,, and the corresponding
Cholesky factor of the covariance S,,, via (25)-(40);

12. end for

13. New Landmark initialization

13. for measurements of newly visited landmarks do

14. Perform landmark initialization step via (20)-(24) ;

15. end for

16. end for

4 Simulations and results

A series of simulations have been conducted to
evaluate the performance of the proposed HSCKF-
SLAM algorithm in comparison with the UKF-SLAM
and the SCKF-SLAM. The publicly available UKF-
SLAM simulator @ is modified as a benchmark plat-
form. The other two algorithms have been implemented
in Matlab R2012a on a 2.9GHz Intel Corei7-3520M
Processor. As presented in Fig. 1(a), the robot is as-
sumed to move along the predefined trajectory in a rec-
tangular plane. The robot starts from the origin of the

global frame and detectsnearby landmarks with a laser
sensor. The additive measurement noise is assumed to
follow a Gaussian mixture distribution of the form -
w, ~ (1 - a)N<wk;0’0-?) + aN(wk;()’O-g)
Osa=<l, o, =Bo
where o represents the noise model contamination, o,
and o, are the standard deviations of the Gaussian mix-
ture components, and B denotes the ratio between
them. The process noise is 0.2m/s in wheel velocity
and 2° in steering angle. Other simulation parameters
are listed in Table 1.

Table 1 ~ Simulation parameters.
Parameters value Parameters Value
Wheel base length L 4(m) Process time interval T, 0.025(s)
Wheel velocity V, 3(m/s)  Control frequency f, 40(Hz)
Maximum steering angle G, +30(°)  Observation frequency f, 5(Hz)
Maximum observation range r, 30(m) View field of laser sensor F, (/)C()j) ~ 130

< 7

@  https://svn. openslam. org/data/svn/bailey-slam/
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Fig.1 The simulation results. True landmark ( s ) and robot path (thick solid lines) , estimated landmark ( diamonds)

and robot path (dotted lines) , laser measurement ( thin solid lines) .

In order to evaluate the performance of the pro-
posed algorithm under various measurement noise con-
ditions , two simulation scenarios with different measure-
ment noise models are considered: a Gaussian mixture
contaminated noise model and an outlier contaminated
noise model. For a fair comparison, all the SLAM algo-
rithms are carried out with the same simulation parame-
ters except that of the measurement noise. 200 inde-
pendent Monte Carlo simulation runs are conducted for

each simulation scenario.

4.1 Results in Gaussian mixture contaminated
noise case

In this simulation scenario,the measurement noise

is assumed as a contaminated Gaussian model with two

independent Gaussian mixtures. The standard deviation

of the main mixture component ¢, is set to 0.2m in
range and 2° in bearing. Fig. 1(b) ~ (d) show the re-
sults of a typical simulation run where the contamina-
tion and ratio parameters are set to 0.3 and 10, re-
spectively. These plots indicate that both the robot traj-
ectories and landmarks are estimated accurately at dif-
ferent time steps (k£ =36s, 72s, and 108s) by the pro-
posed algorithm. The Kalman gain weights under dif-
ferent measurement residuals are also presented in
Fig.2. It can be seen that the weights reach local mini-
mums in the most time steps when either the range
measurement residual or the bearing measurement
residual is a high peak of the curve. Moreover, larger
measurement residuals can bring about smaller
weights. As a result, the measurement outliers are su-

pressed to a great extent in the Kalman update process.
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Fig.2 Average Kalman gain weights under different

measurement residuals
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The effects of different combinations of parameters
« and B on accuracy are illustrated in Fig. 3 and Fig. 4.
Fig. 3 shows the relations between the average RMSE of
the algorithms and contamination parameter o when ra-
tio parameter B is fixed to 5. Similarly, the relations
between average RMSE and ratio parameter 8 are shown
in Fig. 4, where ais set to 0.4. As observed in the fig-
ures, the HSCKF-SLAM outperforms the other algo-
rithms in all cases. Besides, the superiority of the
HSCKF-SLAM is more obvious as the parameters in-
crease. The results indicate that the Huber based up-
date plays a more important role when the distribution
of the non-Gaussian noise has thicker tails. The SCKF-
SLAM exhibits slightly better performance than the
UKF-SLAM due to the reason that SCKF can approxi-
mate the nonlinear functions in higher order than UKF.

The unscented transformation is no longer numerically

&= u ¥ UKF-SLAM u SCKF-SLAM @& HSCKF-SLAM
g
%
[}
=]
]
o
]
on
g
k=l
B
=
0.1 0.2 0.3 0.4
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Fig.3 Average RMSE under different contamination parameters
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g
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Heading average RMSE (°)
=

Beta

Fig.4 Average RMSE under different ratio parameters

stable and the Cholesky decomposition of the state co-
variance encounters troubles in cases of extremely large
noise.

4.2 Results in outlier contaminated noise case

In this simulation scenario, the basic measure-
ment noise follows a Gaussian distribution by setting
contamination parameter to 0. This Gaussian noise
model is then contaminated by a number of random
measurement outliers which are induced periodically.
Totally 21 measurements are selected and biased by an

offset [5m, 5°]. Fig.5 depicts RMSE of the robot po-
sition and heading of the algorithms. It can be seen
from the results that both the UKF-SLAM and the
SCKF-SLAM suffer from estimation errors larger than
the HSCKF-SLAM apparently. The position and head-
ing RMSE are below 1m and 1.2° for HSCKF-SLAM.
This proves that HSCKF-SLAM can detect all the
measurement outliers and reduce their influence effec-
tively. The average NEES of the outlier scenario are
shown in Fig. 6, where the two horizontal dashed lines
are plotted to mark the 95% two-side confidence re-
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gion. It can be seen that both SCKF-SLAM and UKF-
SLAM become inconsistent for all the time steps, while
HSCKF-SLAM retains consistent for more than 75 time

steps. These results demonstrate that by making use of
Huber’ s update method, the conventional Kalman type

filter is insensitive to the measurement outliers.

3
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Fig.5 Comparison of RMSE in outlier contaminated Gaussian measurement noise case
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Fig.6 Average NEES of the robot position in outlier case

4.3 Computational cost

The computational costs of these algorithms are al-
so compared. As illustrated in Table 2, UKF-SLAM
SCKF-

SLAM demands more running time because QR decom-

requires the minimum computational cost.

positions are employed to ensure numerical stability.
HSCKF-SLAM takes the most computational effort due
to the extra realization of robust linear regression in the
measurement update stage. However, the increased av-
erage running time for one single update step with Hu-
ber’ s method is of the order of a 3ms. This increase is

Table 2 Computational cost of algorithms

Algorithms Average running time
UKF-SLAM 5.3(s)
SCKF-SLAM 5.7(s)
HSCKF-SLAM 7.1(s)

a worthwhile price to be paid for robusiness and consis-
tency. Besides, such a level of increase is often ac-
ceptable in real-time SLAM applications.

5 Conclusions

A robust SLAM algorithm based on SCKF and Hu-
ber’ s GM-estimator is proposed for robot systems with
non-Gaussian measurement noises. The integration of a
GM-estimator doesn’ t only retain the accurate merit of
SCKF, but also provides an efficient way to work in
non-Gaussian cases, with performance surpassing the
benchmark algorithms in robustness and consistency.
The influence of Huber’ s GM-estimator on the conver-
gence rate and efficiency properties with different score
functions will be further studied and optimized.
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