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Abstract

In view of the problems and the weaknesses of component-based software ( CBS) reliability
modeling and analysis, and a lack of consideration for real debugging circumstance of integration tes-
ting, a CBS reliability process analysis model is proposed incorporating debugging time delay, im-
perfect debugging and limited debugging resources. CBS integration testing is formulated as a multi-
queue multichannel and finite server queuing model ( MMFSQM) to illustrate fault detection process
(FDP) and fault correction process (FCP). A unified FCP is sketched, given debugging delay, the
diversities of faults processing and the limitations of debugging resources. Furthermore, the impacts
of imperfect debugging on fault detection and correction are explicitly elaborated, and the expres-
sions of the cumulative number of fault detected and corrected are illustrated. Finally, the results of
numerical experiments verify the effectiveness and rationality of the proposed model. By comparison,
the proposed model is superior to the other models. The proposed model is closer to real CBS testing
process and facilitates software engineer’ s quantitatively analyzing, measuring and predicting CBS
reliability.

Key words: software reliability, component-based software (CBS), debugging delay, imper-

fect debugging, queuing theory

0 Introduction

Software reliability plays a very important role in
the software life cycle, especially in the development
phase. With the improvement of scale and complexity
of software, the development of object-oriented tech-
niques, component-based software ( CBS) has been
widely used, and this research on CBS reliability has
already become the focus of study in recent years.

CBS testing process can be divided into unit tes-
ting, integration testing and system testing. Most of re-
search efforts available concentrate on the integration
testing stage. For example, for architecture-based soft-
ware reliability, Gokhale'') represented a unified
framework model based on state, and CBS reliability
prediction was carried out using an analytical method.
In Ref. [2], the reliability of individual component
was evaluated firstly, and then the whole system relia-
bility was predicted. Likewise, Ref. [3] assessed the
whole CBS reliability by calculating the execution path

reliability based on the reliability of component and
system structure. The CBS reliability was analyzed dy-
namically through calculating and evaluating execution
path reliability of three standard structures in program
in Ref. [4]. These research efforts focus on directly
calculating CBS reliability, but give little consideration
to reliability improvement analysis.

In real software testing, the faults detected go
through a series of processes: detecting, isolating, an-
alysing, allocating, correcting and verifying, and there

exist delays"’.

For example, Ref. [6] carried out an
analysis of delay between fault detection process
(FDP) and fault correction process ( FCP), and con-
cluded that mean value function (MVF') of FCP can be
obtained by failure density function A,(¢) of FDP and
time delay A. Ref. [7] got MVF of FCP by introducing
a delay impact factor ¢(t). Considering the delay in
fault correcting, the number of corrected lags behind

the number of detected in [0,¢], and often there are
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circumstances that the faults detected are waiting to be
corrected. So, applying queuing theory into software
testing becomes a natural choice. For instance, Ka-
pur'®’ employed an infinite server queue to build a rel-
atively unified software reliability analysis model, con-
ducted the reliability analysis of different types of fault
correction process and achieved good effect finally.
Huang'®' finished the software reliability analysis using
finite and infinite server queue, and considered the

7 Lin'" used a single queue

change point problem'
multichannel model to make an analysis of perfect and
imperfect debugging based on simulation, and incorpo-
rated debugging delay and the limitations of debugging
resources. Hou'"' adopted a hybrid queue model to
conduct CBS reliability analysis considering the incom-
pleteness and unlimited debuggers, but the shortages
were the absences of considering debugging delay and
introducing new faults.

Thus it can be seen that, in these software relia-
bility studies available including CBS based on analyti-
cal model or simulation, some studies have involved
explicit correction efforts and delay between FDP and
FCP, but the study of real debugging process is still
not deep and thorough, and there are still some insuffi-

ciencies in the following aspects:

(1) There are too many assumptions in analyses
available; ignore the sub-processes of debugging and
time delay, debugging is perfect, and no new faults are
introduced ™’ ;

(2) The severity and the differences of faults de-
tected in testing are ignored;

(3) The research efforts®""’ above are not suited
to reliability analysis of CBS integration testing;

(4) Furthermore, the debuggers are regarded as
unlimited.

In response to the problems and deficiencies of ex-
tant research, this study is mainly concentrated on the
CBS reliability analysis when incorporating debugging
delay, limited debugging resources and imperfect de-
bugging in the integration testing stage.

1 Finite server queuing model MMFSQM
considering debugging delay and imper-
fect debugging

Let CBS S consists of N components, that is S =
{C,, 1<i<N/|. CBS integration testing of S can be
described as a multi-queue multichannel and finite
server queuing model ( MMFSQM ), as shown in
Fig. 1.

Incomplete correction % Debuggers
v gTesters gTesters&Manager&Debuggers / Queue, Correction J \
o ma() 0 B W W Dt (1)
C 9 - ——
@ Y L2200 o, ) () 2 M)
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‘. ----- ’ Queue,
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LDl T New introduction FAP
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Fig.1 Multi-queue multichannel and finite server queuing model considering

debugging delay and imperfect debugging

Fig.1 is a gray-box test model, which executes
the integration testing based on an operation profile of
CBS. In order to describe accurately the testing
process, testing is divided into FDP and debugging
process. Thereinto, FDP denotes detecting faults by
testers and debugging process can be furthermore parti-
tioned into isolating, analyzing ( determining the
root) , allocating and correcting. As shown in Fig. 1,
debugging process includes fault analysis process
(FAP) and fault correction process (FCP), and there
exist debugging delays. FCP consists of different types
of fault correction queues and debugging resources to
accomplish fault correcting. The faults of component C,
enter different fault correction queue FCQ); according to
the fault allocation strategy ( FAS) and are allocated

debugging resources in the light of current queues
state. Here, debugging resources mainly refer to as the
debuggers of queues.

Compared with perfect debugging, there will exist
incomplete debugging and introduction of new faults in
the debugging process. So, there will be two feedback
lines between FCP and FDP, and both cases might be
called imperfect debugging in this work.

Testing begins at the component level and differ-
ent reliability enhancement techniques are appropriate
according to complexity, function and important place
of different components. Obviously, the faults from dif-
ferent components will go through different sub-proces-
ses of FAP and be allocated to different correction
queues of FCP, due to complexity and severity. In or-
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der to reflect the diversity of debugging, the faults de-
tected from components could be divided into two
groups: C = F, U F,.

(1) The faults from critical component C,; are
classified into serious fault set F;

(2) The faults from the other component C; are
classified into simple fault set F.

Hereon, the faults outputted by FDP are allocated
to different correction queues by FAS. Accordingly, we
set V fault correction queues, the maximum capacity of
each queue to be m,(1<i<V) and the queues can be
classified into two kinds of fault correction queues:

(1) Serious fault correction queue FCQ,,: seri-
ous fault F enters FCQ,, according to first come first
server (FCFS) ;

(2) Simple fault correction queue FCQ . : simple
fault F, enters FCQ,, according to FCFS.

Compared to available queue models with unlimit-

8921 each fault correction queue of

ed debuggers
FCP consists of limited debuggers.

The subsequent analysis is based on the following
assumptions[g’ls] .

(1) Let the failure process satisfy non-homogene-
ous poisson process ( NHPP) distribution, that is
(easy to be proven) time interval of failure is random
variable with the same distribution of exponential type;

(2) In the process of CBS testing, detecting, iso-
lating, determining root and correcting are independ-
ent;

(3) Debugging process is imperfect, that is,
there exist incomplete debugging and introducing new
faults ;

(4) The failures among the components are inde-
pendent.

By the assumptions and analysis above, the CBS
integration testing process consists of an M/M/V/m,

queue system with multi types of service windows.

2 CBS integration testing process analysis
considering debugging delay and imper-
fect debugging

2.1 The unified CBS integration testing process
analysis considering debugging delay

It is assumed that random variable X is the mo-
ment of detecting fault in the integration testing and the
fault w occurs at x(0<<x<T). Let random variable Z
be the time of fault isolating and determining the root
with probability distribution function Z (¢) and proba-
bility density function z(#) and random variable Y be
the time of fault correction by FCQ, with probability
distribution function ¥ (#) and probability density func-

tion f(¢).

Due to limited debuggers of MMFSQM, fault w
will enter into the waiting queue when it cannot be al-
located debugging resources timely. Thus, considering
the actual working process of MMFSQM, there will be
following cases where fault w is corrected in [x, T]:.

Fault w is removed thoroughly with probability p
and is unfinish corrected (including w in waiting queue
and in correcting) with probability r. Furthermore, in-
corporating imperfect debugging, incomplete correction
and introduction of new faults are denoted by probabili-
ty ¢ and h(h <<p, in most cases). Obviously, p +r
+¢q +h =1 will be obtained.

Let random variable K be the number of debuggers
and k£ be the number of available debuggers at . Due
to limited debuggers, the probability of the debuggers
being idle at ¢ is k(¢).

Hereon, it is supposed that a complete fault cor-
rection process needs to go through detection, isola-

tion, determining root cause and correction sub-proces-
ses. So, let N;;(1), N;(t), N,(t) and N, (1) be four
stochastic counting processes representing fault detec-
ting, isolation, determining root and correction respec-
tively. Obviously, it can be drawn .
Pi{N,(1) = m|

a;(t)

= ZP%N,-,U) =ml de(t) = n} XP{NJH(t) =n}

a;(1) I:m (t) :Ine—mjd(t)
= ZPUV,',U) =ml Ny(t) = nf X/d#

n=0 .

ai(t) n_—mig(t)

< m m n-m [m} (t) J € i
= > Crp ()1 =p (1) ]"" x == o

n=0 .

p m _=[mig(1)p;(1)]
= {[’njrl(t)l)j(t)} e }x

m!

{ajﬁj [m]d( t) _ m]-d( t)p]( l) ]n*"le*[’"ﬁl(‘) f/njd(l)pj(l)] }
n=0 (n - m) !

(D)
where a;(t) is the number of total faults of component
C;in [0,t], m;, (1) is the cumulative number of faults
detected from C; and p; () is the probability of com-
plete fault correction in correcting queue. It was clear
that when considering imperfect debugging a,(¢) is the
increasing function with testing time ¢, and when a;(1)
is large especially a,(1) — o , it can be got:

_ [ma(0)p, (1) Jme mwm

m!

PIN,(1) =m]
(2)

Based on the nature of Poisson distribution
process, it can be got:

mjr<t) = mjd<t)pj<t) (3)
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2.2 CBS integration testing analysis considering
two types of fault debugging delay

In the integration testing of CBS, the severity and
complexity of different components are considerably dif-
ferent. Due to central key business functionality, the
faults coming from complex and critical component ( for
example, fault-tolerant component) will be corrected
going through multiple sub-processes. By contrast, the
faults from simple and non-critical component can be
corrected going through only relatively small number of
sub-processes. Of course, different levels of imperfect
debugging phenomena may exist due to some uncertain
influence factors during the debugging process above.

Considering fault severity, limited debuggers and
imperfect debugging in MMFSQM,
CBS integration testing process analysis includes two

the performance of

types of faults. These two kinds of faults refer to seri-
ous fault ¥, and simple fault F| respectively.
2.2.1 The correction process of serious fault consid-
ering debugging delay
For serious fault F, € F, the time spent from de-
tection to correction is the longest. Hereon, it is as-
sumed that F, will go through detecting, isolating and
correcting sub-processes. Based on the assumptions a-
bove, the following can be got:
PlY<st-yNX=xNZ=yNK <k}
=PiY<t-yNX=xNZ=y| XP{K<k |
=P{Y<it-yl X =x} xP|{X =x} xP{Z =y}
x P{K < k |
2} xP{Z =y} xP{K < k,}
(4)

At some point, the probability that fault has been

=F(t-y) xP{X =

corrected or being corrected is p, +r, =1 —¢q, — h,.
Based on the analysis above, the following can be ob-
tained :

prtr =1-q -h
:LfP%Y$t—yﬂX:xﬂZ:yﬂK<k1€dydx

MF“‘Y) X P{X = xf xz(y) x P{K <k, | dydx

= x| dydx

(5)
Let fault F, enter FCQ,. and the probability of

complete correction in FCQ . is p, . So,
le(t) =p, X (p, +1))
= paPIK <} [ [ F(1=y) x2(y)

x P{X = x|dydwy (6)
Here, let P{K < k,;} =k, (t) satisfy the following

. [15]
relation' 7 .

PIK < kl}MF(t —y) x2(y) x PIX

ﬁl -Bi

%K<k}_k(t)—z (7)

where [ denotes the number of faults being corrected
and B, is a positive constant. For component C,, at ¢
failure probability is

_ i ()

m, (k) (8)

where k; is the execution time proportion of C; in the in-

P{X = «x}

tegration testing of CBS S

w; Z Pjilji

K; = n l=ln <9>

Z w; 1; Pirlix

i=1

Among these parameters, p; is transition probabil-
ity from C; t0 C;, w = [ w, ] represents execution proba-
bility of C; in steady state and ¢; denotes mean execu-
tion time of C; when the transition (C,, C;) occurs.

Substitute Eqs(6) ~ (9) into Eq. (3), the fol-
lowing equation can be derived as
mjr<Kjt) = mj(l(Kjt)pcl x (py +r))

= my(kt)paPIK <k %M:F(t - 9)z(y)
P{X = x}dydx
]z Bllle!_ﬁl)ﬂﬁF(t -y)z(y)

=0

o <( : ZC)) Jara

o 3B [ FG - e

m;," (k) dydy (10)

2.2.2 The correction process of simple fault consid-

= my ( Kjt)pcl (

ering debugging delay
Hereon, it is assumed that simple F', € F will go
through detecting and correcting two sub-processes.
Taking simple fault F, from C , correction process a-
nalysis is done.

Also, like serious fault above, the following can

be ot «
", [m-z(t)pz(t)]”le‘["%«/“)m(z)]
P%Nsr(t) =m} = bk s -
(11)
m,(t) = m,(t)p,(t) (12)

where p, (t) is the probability that fault is removed
completely in correcting queue.
pp+n=1-qg,-h

=L’P%Yst-xmxzxm<<k2}dx

- L’Fu—x) X PIX = x| x PIK < k| du
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= PIK <k thF(t—x) « PIX = x| du

(13)
Let fault F, enter FCQ; and complete correction
probability in FCQ is p,,. So
pa(t) =py x(p, +1,)
= p, x P{K < ky| xLF(t %) xP{X = x}dw
(14)
Substitute Eq. (14) into Eq. (12), with simplifi-
cation, Eq. (15) can be obtained :
msr(KSl> = m.vd(KsL)psZ X (p2 + r2)

msd<x,\.t>p\.2P%K <k} [F1-2)PIX = x]ds
m,\.d(fcst)psz( < Bee B)f F(t - x)( n;d ((:Zc)))
= Bre”
I

psZ(
1=0

)LF(t—x)mM’(st)dx (15)

Obviously, when considering more sub-processes
of debugging, m, (k;t) and m, (k) will become com-
plicated.

2.2.3 Fault detection and correction of CBS integra-
tion testing considering debugging delay

Exponential distribution is usually taken to be cu-
mulative distribution function of service time ( namely
fault correction time). So let fault correction time
spent in queues of MMFSQM obey parameter u expo-
nent distribution. Thus F(y) = 1 - ™ is got with
probability density function f(y) = dF(y)/dy =
we ™. Substitute f(y) into Eq. (10) and Eq. (15),

with simplification, one can be obtained;

m () = S B 73’)[)[(1 e )3(y)
. m, (kx)dydy, w e F,

’81 _ﬁz)fpﬂ i) m,(kx)dx

Ip-1

m, (ki) = ,032( Z

=0

’w E F.S
(16)
The cumulative number of faults detected and cor-

rected of CBS S in [0,¢] can be derived as

%

M,(t) = Z Z my (K;t)
»=1 C;EFRQ,
v

Mr<t> = Z Z mz‘i(t) =
»=1C;eFRO,

ol S Bll,ﬁl)cgﬂ“ H) () my ()

[=0

P
dydx +p52( Z '8 Z)CZFLIU“(MH)”LM(K-*x)dx
(17)

2.3 Fault detection and correction of CBS inte-
gration testing considering debugging delay
and imperfect debugging

Here, the reliability modeling of component C; is

mainly based on G-O model" "’

and imperfect debug-
ging. In subsequent analysis, MMFSQM is formulated
based on the following assumptions

(1) Fault detection rate is proportional to the
number of faults undetected, and b,(t) is the propor-
tion function;

(2) Fault correction is incomplete with probabili-
ty function p,(¢) ;

(3) New faults can be introduced during correc-
tion, fault introduction rate is proportional to the num-
ber of faults corrected and the probability function is r,

(1) (ri(1) <<pi(1)).

Based on the assumptions above, differential
equations can be derived as
dm, (1)
d =b,(t)[a, (1) —c(1)]
t
de,(t) dm, ( t)
i - 18
o =P g (18)
da, (1) ( t) de; (t)
s r.(t)

Solving the dlfferentlal equations above with the

ai(()) = a;,

i

boundary conditions of; m;(0) = 0,
c(0) = 0 yields;

m(0) = [ab,(r) x

{[1 —f (1 -r(uw)]p; ()b, (u)e o TM(T)deu]dU}

(19)

dm, (1)
A =

[14 [ L) = 11p, ()b, (e b e gy

(20)

For simplicity and tractability, let b,(t) =b; p,

(t) =p; r,(t) =r, so Eq. (19) can be simplified as

m(t) = ﬁ“ —e T (21)

Substitute Eq. (21) into Eq. (17), the cumula-
tive number of detected and corrected of CBS S in the
integration testing can be derived as

= a,b,(1) X
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4

M,(t) = Z Z my(Kkit) =
v=1 ¢;EFRQ,
v
a (1 _ e—(l—r)p/zxil)

UZ=1 C;eFRQ, (1 - r)p
v

M(1) = > > mi(1) =

v=1 C;e FRQ,

,8[ -Bi 1t ) . :
1 ) Z ffz(y)e—< —r)piKI%(l _ e—u(l—y))
=0 Ger O

e

Al

M k=1 0l g,
ddx+(M)( Bse )X DI
a2 T C;[M“ )

1
(- (1 =r)pbx,)

ky -1

abpcl (

(e[#_(l_r)lll)m]{ -1 ) ]

(22)

In this study, incorporating debugging delay and
imperfect debugging into integration testing of CBS, we
refer to the proposed model as debugging delay and im-

perfect debugging-CBS reliability growth modeling
(DDID-CBSRGM).

3 Numerical illustration

3.1 Numerical example

In recent years, performing software reliability
analysis and generating failure data by simulation'*""'®
(based on discrete event simulation) have been greatly
used. Without CBS failure data set available, we verify
the potential of proposed model; DDID-CBSRGM
through a CBS reported in Ref. [17] as an illustration
example that has been extensively used''>'*). The lay-
out of the specified CBS application is depicted in
Fig.2 and transition probabilities among the compo-
nents are shown in Table 1.

Fig.2 Architecture of a CBS

Table 1  Transition probabilities among the components
pP,,=0.60 P,,=0.20 P, ,=0.20 P,,=0.70 P,;=0.30
P;5=1.00 P,;=0.40 P, =0.60 P;,=0.40 P, =0.60
P;5;=0.30 P;;=0.30 Pg4=0.10 P;,=0.30 P,,=0.50
P,,=0.50 Py, =0.25 Pg ;=0.75 Py =0.10 P, ,, =0.90

3.2 Parameter settings

In the previous work, CBS simulation procedure
has been developed considering imperfect debugging,
and performed fault detection and correction analysis.
On that basis, let b, =0.0085 and a, =40(1<i<N).
In integration testing, correction rate is related to the
skillful degree of debuggers, testing environment and
other many factors and cannot be accurately estimated.
Without loss of generality, let correction rate y, =
0.04. The extent of imperfect debugging is determined
by fault introduction rate r,, let r;, =0.15. Here, simu-
lation procedure is exploited to get failure data set of
CBS integration testing. Due to page-limitations, it is
not in this paper ( contact the author for more informa-
tion on it). In identifying critical component, critical
component is considered to be the one that has more
interactive exchange with the other components'*’. So,
execution probability w; of the components in steady
state is calculated, and the maximum value of w, and
ws of C, and C, is discovered in 10 components in
Fig. 2. Moreover, Ref. [ 16 ] determines that C, and C;
are critical components by means of simulation. Thus,
the faults from C, and C; enter serious fault correction
queue; FCQ, and FC(Q,, and the faults from the other
components enter simple fault correction queue:

FCO.,,.

3.3 Evaluation Criteria

To evaluate the models, MSE, Variance, RMS-
PE and R-square are used to measure the potential per-
formances of the models.

n

(y: _m(lz)>2
D Wi mmiL) )

MSE = . (23)
=
Z [m(tL) _5/12 l n
R - square = —— ,}7=; Yi
_ =
[yi _y}z
=
(24)
Z (y; =m(t;) - Bias)z
Variance = |-~ T (25)
Z [m(ti) _yi]
Bias = = ;
n
RMS-PE = /Bias® + Variance’ (26)

thereinto, m(t,) represents the estimated value of
faults by time ¢;, v, denotes the cumulative number of
faults detected and n is the sample size of the real fail-
ure data set. Obviously, smaller values of MSE, Vari-
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ance, RMS-PE and the closer to 1 of R-square indicate
a better model than the others.

3.4 Performance validation and analyses

First, the operation processes of FCQ,, FC(Q, and
FCQ, are carried out in the case of different debuggers
utilizing CBS simulation procedure and the correspond-
ing residual faults profiles in waiting queue are ob-
tained, as shown in Fig.3. As can be seen from
Fig. 3, the cumulative number of faults waiting to be
corrected continues to fall in FCQ,, FC(Q, and FCQ,,
as the number of debuggers increases. Thereinto, the
faults in waiting queue of FCQ, and FC(Q, are corrected

completely when the debugger is 9 persons (i.e. De-
bugger ., = Debugger,,,, =9) at the testing time of
4000 and 5000 respectively. This indicates that alloca-
ting 9 persons to FCQ, and FC(Q, can meet the require-
ment for real testing. By contrast, due to the large
number of initial faults in FC(Q,, the number of debug-
ger required to be allocated is larger than that of FCQ,
and FC(Q, accordingly. It is clearly observed that there
are no faults in waiting queue of FC(Q, under the condi-
tion of Debugger ¢y, =29 and ¢ =5000, from the dia-
gram in Fig.3(c).

D
(=)

—
(%]

—_
=)} =} 8]

—_ [
[=)} =} N W

w
w

Number of faults in waiting queue

2 H—E—6—<€] 03
0 1000 2000 3000 4000 5000 0
Time

(a) Open-remaining faults of FCQ1

Number of faults in waiting queue

(=3

= = ) 0¢

1000 2000 3000 4000 5000 0
Time Time

(b) Open-remaining faults of FCQ2

S
)

(%%
N

(]
-

—
N

Number of faults in waiting queue

1000 2000 3000 4000 5000

(c) Open-remaining faults of FCQs

—<&— Debugger=6 —+—— Debugger=8
—PP— Debugger=26 ——%— Debugger=28

—<— Debugger=9
—©— Debugger=29

—+&— Debugger=11
—=— Debugger=31

Fig.3 Open-remaining fault profile

Fig. 4 illustrates the fault profiles including detec-
tion and correction of FCQ,, FCQ, and FCQ, in case
of the numbers of debugger allocated to three queues a-
bove. It can be seen fault correction profile of CBS S
lags behind evidently the detection profile. It indicates
that there exists debugging delay in fault correction

process and sub-process of correction can not be ig-
nored. Moreover, as Fig. 4 shows, the number of faults
corrected is the same with that of faults detected when ¢
=4000, 5000 and 5000 for FCQ,, FCQ, and FCQ,,
which indicates that all the faults detected have been
corrected completely.

[} (5] [}
= 40 - z 50 = 300
u:‘e Fault detection profile Lg Fault detection profile L‘g Fault detection profile
&, &
g3 5 40 ; 5 240
8 8 8
=1 B B
g 24 s 30 _§ 180
=) <
8 16 S 20 S 120
.g .=t Fault conrrection profile =
8 8 g 10 8 60
E Fault conrrection profile g 3
E o0 20 g 0
= 0 1000 2000 3000 4000 5000 = 0 1000 2000 3000 4000 5000 = 0 1000 2000 ) 3000 4000 5000
Time Time Time
(a) Fault detection and correction profile of  (b) Fault detection and correction profile of (c) Fault detection and correction profile of
FCQ, FCQ, FCQ,

Fig.4 Fault profile of FCQ,, FCQ, and FCQ,

Next, to validate the effectiveness of DDID-CB-
SRGM, it is compared with CBS reliability models

available and imperfect debugging models. These mod-
els encompass Hou model "’ | the models obtained by
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applying three imperfect debugging models proposed
respectively by Kapur'®' | Pham'™' | Ohba'"' to CBS S
in Fig. 2, and the model obtained by DDID-CBSRGM
without considering debugging delay and imperfect de-
bugging. Hereon, these models can be referred as Hou
model, Pham model, Ohba model, Kapur model and
CBSRGM respectively. Fig. 5 illustrates graphically the

comparisons between the observed failure data, and the
data estimated by the six models above. From Fig. 5
(f), the estimated results of DDID-CBSRGM are very
close to real fault correction profile especially before ¢
=2500. By contrast, the other five models engender
large errors in different degrees.
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Fig.5 Observed and estimated cumulative number of corrected faults versus time

In order to makes a further analysis and compari-
son on the performances, comparison criterion results
of performance of six models have been calculated, as

shown in Table 2.

Table 2 Comparison results of different models

Model MSE R-square  Variance ~ RMS-PE

Hou model ~ 411.637 0.78372 21.3287 21.4689
Kapur model 1607.3233  1.5932  41.2555  41.256
Pham model ~ 2235.153 0.54397 50.2623  50.7598
Ohba model  1022.9015 1.0589  59.0444  65.1367
CBSRGM 655.5762 0.72168  26.808  26.9517
DDID-CBSRGM 104.5748 0.92642 16.4357 17.8973

It is observed that the values MSE, Variance and
RMS-PE are the lowest (104.5748, 16.4357 and 17.
8973, respectively) among the models considered. Be-
sides, we also see that the value of R-square is also the
nearest to 1 (0. 92642 ), which demonstrates that
DDID-CBSRGM achieves maximum performance in all

these models. The reason for this is that, the proposed
model incorporates debugging delay and imperfect de-
bugging into reliability modeling, so DDID-CBSRGM
has a more accurate description of real debugging
process. Moreover, in the other five models, Hou
model and CBSRGM have a better performance than
the other three models. The probable explanation is
that fault detection functions of Hou model and CB-
SRGM can describe accurately the failure situation than
the other three models. In Kapur model, Pham model
and Ohba model, the performance of Pham model is
inferior to the other two models. This is because Pham
model ignores debugging delay, and fault detection rate
function b(t) of imperfect debugging model proposed is
too subjective and can not describe real testing environ-
ment.

Altogether, from the Fig. 5 and Table 2, it can be
concluded that the proposed analytical model built by
DDID-CBSRGM has a more accurate description of the
fault detection and correction process of CBS integra-
tion testing, due to considering real testing process.
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Especially, the proposed model explicitly incorporates
debugging delay of different serious faults and imperfect
debugging phenomena, making DDID-CBSRGM per-
form the better performance than the others. Further-
more, as a practical matter, software engineer can se-
lect and set appropriate parameters to conduct experi-
ment based on historical data, and obtain quantitatively
insightful information tightly related to software testing
and reliability evaluation, and determine the best deci-
sion reference on software development and testing re-
sources allocation.

4 Conclusions

The major contribution of this paper is that we es-
tablish multi-queue multichannel and finite server
queuing model with limited debuggers, and explicitly
elaborates the impacts of debugging delay and imper-
fect debugging on CBS integration testing. The practi-
cal numerical example justifies that the proposed
DDID-CBSRGM illustrates more accurately the integra-
tion testing process, explores a more efficient approach
for research on CBS reliability growth model and the
results reveal that the proposed model has better per-
formance as compared to the other models. In particu-
lar, CBS integration testing is very complex, stochastic
process involving various factors and sub processes, so
incorporating more real situations into CBS reliability
model is a main research direction. The research
trends mainly encompass fault tolerant component relia-
bility configuration, test coverage, incorporating testing
effort (TE), the differences in transition probability
and operational profile, and changeable structure into
CBS reliability modeling and analysis, etc.
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