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Abstract
Reasonable selection and optimization of a filter used in model estimation for a multiple model

structure is the key to improve tracking accuracy of maneuvering target. Combining with the cubature

Kalman filter with iterated observation update and the interacting multiple model method, a novel in-

teracting multiple model algorithm based on the cubature Kalman filter with observation iterated up-

date is proposed. Firstly, aiming to the structural features of cubature Kalman filter, the cubature

Kalman filter with observation iterated update is constructed by the mechanism of iterated observation

update. Secondly, the improved cubature Kalman filter is used as the model filter of interacting mul-

tiple model, and the stability and reliability of model identification and state estimation are effective-

ly promoted by the optimization of model filtering step. In the simulations, compared with classic

improved interacting multiple model algorithms, the theoretical analysis and experimental results

show the feasibility and validity of the proposed algorithm.

Key word: maneuvering target tracking, nonlinear filtering, cubature Kalman filter ( CKF) ,

interacting multiple model (IMM)

0 Introduction

Target tracking is used by subjects that realize a
process of state modeling, estimation and tracking
about the objects observed by means of various obser-
vation and calculation methods. As an emerging tech-
nique, target tracking is widely applied to the military,
civilian and economic fields'''. Target tracking is clas-
sified to maneuvering target tracking and non-maneuve-
ring target tracking by the type and intensity of mo-
tions. In the maneuvering case, owing to the variety
and complexity of target motion features, it is difficult
to describe precisely the motion state of via the single
and stationary models, therefore, the multiple model
structure is commonly adopted'?’. Compared with the
single-model approach, a set for describing the behav-
ior pattern of the system is selected or designed through
the multi-model approach where each model matches
with a specific system pattern, and the estimation for
system state is the reasonable synthesis of filtering re-

sults of parallel running filters">'. Among various mul-
tiple model methods and their improved methods, the
interacting multiple model (IMM) algorithm is recog-
nized as an effective approach to handle the system
model switch problem, which adopts the modeling soft
switch mechanism and effectively keeps the balance be-
tween model identification and state estimation preci-

43! In the conventional IMM structure, the Kal-

sion
man filter meeting the criterion of the linear minimum
variance estimation is selected as the model filter which
is able to obtain high precision for linear Gaussian sys-
tem. However, the performance of the selected nonlin-
ear filter will directly determine the estimation preci-
sion of the system state and computation complexity of
the algorithm when the estimated system has strong
nonlinear or non-Gaussian feature'®"”’

In recent years, the research in nonlinear filter
catches much attention by domestic and international
experts and scholars in related fields, and some phasic
achievements are made. Considering the superiority of

Kalman filter in realizing recursive Bayesian estima-
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tion, combining with local linearization techniques, the
extended Kalman filter (EKF) is constructed under the
framework of KF'®%).
nonlinear systems by taking the advantage of the Taylor

Its basic idea is to linearize the

series, but this linearization error is large, and it is
difficult to get the Jacobian matrix from nonlinear func-
tion in many practical problems. To solve such prob-
lems, some new nonlinear filtering methods have been
proposed combining with the UT transform or numerical
differencing technique, such as Unscented Kalman fil-
ter (UKF)""")  central difference filter (CDF)'"?,
Ensemble Kalman filter (EKF)'"”"")  etc. However,
these methods can hardly meet the engineering de-
mands because they lead to sharp decline of estimation
accuracy or even filter divergence when handling strong
nonlinear and non-Gaussian problems. With the rapid
improvement in computer performance, combining with
sequential Monte-Carlo simulation method and recur-
sive Bayesian thought, Gordon et al. proposed the par-
ticle filter ( PF) which consists of two basic steps of
prediction and update. Unlike Kalman filter, the pre-
diction step combines a priori model information with
sequential Monte-Carlo simulation technique (SMC) ,
and the update step is completed through re-sampling
technique. PF can achieve a better filtering accuracy
than the EKF and UKF, also it is suitable for the non-
linear systems with arbitrary noise distribution'"!.
However, the implementation mechanism sequential of
importance sampling and re-sampling makes PF cannot
effectively overcome the problems of particle degenera-
cy and re-sampling particle diversity impoverishment.
Moreover, the filtering precision of PF is closely relat-
ed with the number of system dimension and the
amount of particles which limits the universality of its
160 In addition,
based on the third cubature rule, Arasaratnam et al,

proposed the cubature Kalman filter (CKF)'"7'. CKF

approximates the weighted Gaussian integration by nu-

parameters for application objects

merical integration, which takes the advantage of high
efficiency of calculating the multi-dimensional function
integration by using cubature integration numerical val-
ue. With 2n equal weighted cubature points ( n is the
number of system state dimension) , Cubature Kalman
filtering is proved that its probability distribution preci-
sion is better than UKF’ s after approximating nonlinear
transformation.

Based on the above analysis, in the framework of
CKF, combining with the mechanism of observation it-
erated update, a novel improved cubature Kalman filter
(ICKF) is constructed to improve the estimation preci-
sion of CKF. Then applying ICKF into the algorithm
framework of IMM, that is, ICKF is used as the model

filter to improve the performance of IMM. On the basis
of that, this paper proposes a novel maneuvering target
tracking algorithm based on cubature Kalman filter with

observation iterated update (IMM-ICKF). The simula-

tions have verified the superiority of the algorithm.

1 Cubature Kalman filter with observation
iterated update

1.1 Cubature Kalman filter

The key idea of CKF is to calculate the normal
weighted Gaussian integration of function f(x) by the
third cubature integration rule'™ | that is

[fONGes e, Pydx ~ 171 > S+ [Pg)
(1)

where N(x; u, P) denotes that the random variable x
is subject to the normal distribution with mean g and
covariance matrix P. L = 2n denotes the number of cu-
bature points, and &, represents the ith cubature point.

1 0y (-1 0
=m0 OO ] )0
0 1/\o -1

(2)

To demonstrate the recursive realization of CKF,
assuming that the posteriori probability density function
p(x,_, | Z,, ;) which is subject to N(x,_; ; Xi it s
P, ,,_,), has been given at time k — 1. Both are based
on the recursive Bayes framework, CKF is similar to
KF and their realization consists of two steps, the state
one-step prediction and observation update. Firstly,
based on the filtering result of CKF at time £ — 1 and
combining with priori modeling information of state evo-
lution, the state one-step prediction is realized. The
concrete realization is as follows; assuming that the
prediction error covariance matrix P, ,, , is positive
definite, S, , ,_, is obtained by implementing the Chol-
esky decomposition onto P,_,,,_, , that is

P = S (Sicvien) ! (3)

Then the estimation for cubature points in the
mechanism of state one-step prediction is achieved by
Si1/k-1- A

Xt = Sicvnas + Xy (4)

The diffusion of cubature points in the mechanism
of state one-step prediction is realized by the state
transform equation.

Xt = S(X ) (5)
And the state one-step prediction x,,_, is solved.
~ 1 L :

Xik-1 = fz I-le;c/lc—l (6)
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Then the prediction error covariance matrix P, ,,_,

is calculated.

1 Lo i T 2 A T
P, A z i Xhsk- (X)) = X (X))
>
+ 0’11,/{71 (7)
2 . .
where o, ,_, denotes the system noise covariance ma-

trix. Secondly, the observation update step is realized
by combining with sensor observation information at
time k as follows, the Cholesky decomposition on P, ,
is implemented.

P, = S/c/k—l(‘slr/k—l)T (8)

Next, according to S,,,_,, the estimation of cuba-
ture point in the mechanism of observation update is re-
alized.

f;/k,l = Syiaé +-’2k//f71 (9)
The diffusion of cubature points in the mechanism
of observation update is achieved by observation equa-
tion.
Zy = h(x, ) (10)
On the basis of that, the observation one-step pre-
diction z,,_, is solved.

~ 1 Loy

zk/k—l = fz i:]zk/k_l (11)

To solve the filtering gain matrix K, , the observa-
tion partial error variance P} and the covariance matrix

P of state and observation prediction error need to be

calculated.
22 1 L i i ~ ~
P = A Z o1 k- (Zie) ' = 2o (T
t o, (12)
. L. : A ~ -
L z 7S (Zi) " = X (2"
(13)

where O'f‘k denotes the observation noise covariance ma-
trix. K, is calculated by
K, = P;(P)" (14)
Finally, according to Eq. (15) and Eq. (16),
the system state estimation X,,, and its estimation error
covariance matrix P,,, can be obtained.
Jek/A- = ';’-k/k—l + K, (z, - 21:/1;-1 ) (15)
P, =P, _KkPZZ(Kk>T (16)

1.2 The observation iterated update strategy

As we know from the implementing process of
CKF, x,, and P, obtained in the observation update
step are the reasonably correction results of X,,_, and
P,,, . by latest observation information z, using K, , so
the approximate degree of x,, and P, to the true state
will be inevitably superior to fcm_] and P,,_,. The di-
rectly utilizing of x,,, and P, , in the observation update

step can improve the filtering estimation precision nec-

essarily. To repeat the observation update step with X, ,
and P, , in filtering realization is the idea of observation
iterated update. According to the above analysis, the
flow of ICKF is as follows.

Firstly, combining with the construction principle
of CKF, the state one-step prediction J?Tk/k_l’., and state
one-step prediction error covariance matrix P, _, ; can

be achieved.

P!c—l/k—l,] = Sk—l/k—l,](‘sk—l/k—l,./)T (17)
xﬁ_:-l/k-l,] = Sk‘—l/k—l,in + Xk, (18)
x;;/k—l,j = f(x;f-l/k_u) (19)
A 1 L i
Xpk-1,g = fz i K-, (20)
1 L ; i
P, = fz izlxk/k—l,](xk/k—l,]>T
- ';k/k—l,(l(';:k/k—l,]) Tt o'i,k—l (21)

Let j denote the jth iterated implementation in ob-
servation update, j = 1,2,---,J, and J is the maximum
number of iterations. From the above process, com-
pared with conventional CKF, ICKF obtains state one-
step prediction and state one-step prediction error co-
variance matrix through the Lth iteration ( the last itera-
tion) at time & — 1 in the observation update step. To
realize the iterated update process, X, , and P, need to
be solved as the initial value .fk/ho and P, , at time k
for the iterated calculation by putting X, , | gand P,
into observation update step. To calculate the estima-
tion of cubature point in the observation iterated up-
date, the estimation error covariance matrix needs to

carry out the Cholesky decomposition.

P.k/k,j—l = Sk/k,j—l (Sk/k,j—l )T (22)
f;f/k,,’ = Sk/k,.j—l‘fi T Xk (23)
z:c//f,j = h(f;f/k,j> (24)
- 1 L
sk, = fz o Rk, (25)
22 1 L i i
Pk,j = fz i=1zk/k,j(zk/k,j)T
_Ek/k,j(ék/k,j)T + Ulz,,k (26)
L, ; A A
ki = Z izlxk/k.j(zlr/k,j> t- X (2 ;) !
(27)
Xz 22 -1
{{k,j = /{;,/(Pk,j> R (28)
Xk, j = Xpm, j-1 T Kk,j(zk - Zk//;,j) (29)
Pk/k,j :Pk/lc,j—l _Kk,ij,j<Kk,j)T (3())

The repeating utilization of observation iterated
update for improving the estimation performance is lim-
ited, and in the practical applications, in view of the
balance between the filtering precision and the compu-
tation complexity, the number of iterations should not
be too large, and J is usually 1 or 2.



42

HIGH TECHNOLOGY LETTERSIVol.21 No.1[Mar. 2015

2 Maneuvering target tracking algorithm
based on iterated cubature Kalman fil-
ter with observation iterated update

2.1 Interacting multiple model

Consider the following multi-model nonlinear sys-
tem with model switching.

x, = f(x, ., 0, u ) (31)
z, = h(x,, rp, v,) (32)
Ty “‘P(rkl Teot) (33)

x, and z, denote the system state variable and ob-
servation, respectively. w, and v, denote the system
process noise and the observation noise with the inde-
pendent and identical distribution characteristic, re-
spectively. r, denotes the system model state, and D A
{1,2,--+,d} is defined as the set of first order Markov
chain model state satisfying the discrete time, homoge-
= P {r, = a! denotes the
initial probability of the model, and the priori transform
=Pir, =blr =

denotes the model trans-

neous and limited state. ug

probability of model state is 7,

0
aj. Il = [am,m, ]
form probability matrix, W = [Ty,

., and Zz 7 =1, anda,b,d e D. The basic
principle of IMM lies on keeping all the models in sys-

where 77

tem parallel running and the estimation synthesis of
each model filtering results through calculating their
model probability weight. IMM consists of four parts
which include input interaction, model filtering, model
probability update and output interaction. The part of
input interaction calculates the prediction probability of
each model w! |, the model mixture probability u!
the model mixture state estimation of each model
Xy .., and the mixture state estimation error covari-
ance P}, . The part of model filtering implements
the filtering process on each model, the state estima-
tion .;:Z/k,j of each model, the state estimation error co-
variance matrix P, ; and the partial error covariance
Using P}, the
model probability update part calculates each model

matrix P;”; are obtained in this part.

likelihood /] and model probability u; of each model
from the model set at time k. According to w;, X}, ,
and P}, ; obtained through the above three parts, the
output interaction part realizes the calculation of system
state estimation X, and the state estimation error co-

variance matrix P, ,.

2.2 Interacting multiple model based on cubature
Kalman filter with observation iterated up-
date

In the practical application of IMM, the improve-

ment of filtering precision lies on the reasonable selec-
tion of sub-filter according to the feature and perform-
ance requirements of estimated system. Considering
that ICKF has high estimation precision and universali-
ty, ICKF is selected as sub-filter in the filtering part of
the IMM framework and it promotes the overall per-
formance of IMM by improving the state estimation re-
sult of each model. On the basis of that,
proposes the interacted multi-model algorithm based on

this section

cubature Kalman filter with observation iterated update
(IMM-ICKF). The recursive implementation process
of IMM-ICKF is as follows.

While each model probability u;_;, @ € D and the
transform matrix IT of the model state are given, com-
bining with the filtering result of ICKF for each model
at time k — 1, the prediction probability u; , of each
model, the mixture probability u; ", the mixture state
estimation X{_, ,_, and the mixture state estimation error
covariance matrix P!_,, | are solved, and then the in-

put interaction process of IMM is achieved.

“a d b

Mi-1 = Z po1 TWab Mg (34)

,u/;i/:ll = Ty /‘szl//;’zfl (35)

va d 2b b/a

Xioia = Z b:lxk—l/k—l,J/VLk/—l (36)
d

7 _ b % b
P, = Z be I{Pk—l/k—l.J + (X _xk—l/k—l,J)

(Xk k-1 5‘\72-1/1;-1,1>T}Mi/-”1 (37>
where ii_w_l,, and Pk_l/k_u denote respectively the
state estimation and the state estimation error covari-
ance of model b obtained by ICKF, J denotes the above
results obtained from the last iteration of ICKF ( simi-
larly hereinafter). Then, using X!, , and P!_
from the input interaction process as the initial value of
ICKF filtering at time k£, each model will be implemen-
ted with ICKF. And by using the Eq.(25),
Eq. (26), Eq.(29) and Eq.(30), z,,,, P/,
)22/,1_‘], and P}, ; of each model is calculated to achieve
the IMM model filtering. Next, according to Eq. (38)
and Eq. (39), the model likelihood I and model prob-
ability u; of each model is solved to realize the model
probdbility update part of IMM.

= (2m) 1 PR

exp( = 3-(z = 2) PR (2 - B

(38)

wio= mil S il (39)
Finally, combining with x}, ;, and P}, ; and u;,

the system state estimation X, and the system state es-

timation error covariance matrix P, are calculated.

o d
Xy = Z _
a=1

';:Z/k,j,u'a ( 40 )
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d X ~ N -
P, = Z el %Pk/k,L + (X, - xk/k,L) (X, — xk/k,L) }Mk
(41)

3 Simulation result and analysis

To verify the feasibility and availability of the pro-
posed algorithm, the observations based on two-coordi-
nate radar are adopted to realize the typical maneuve-
ring target tracking setting in the X-Y plane. The mo-
tion of the observed target in Radar scanning area is as
follows ; uniform circular motion with the turning angu-
lar velocity +0.4rad/s” in the first 10 sampling peri-
ods; uniform circular motion with the turning angular
velocity —0.2rad/s’ in 11th to 25th sampling periods ;
uniform circular motion with the turning angular veloci-
ty —0.4rad/s> in the following 10 sampling periods,
where plus sign and minus sign denote the different
uniform turning directions and plus sign represent the
clockwise direction and minus sign counterclockwise.
Combining with dynamic characteristics of maneuvering
target motion and physical properties of Radar sensors,
maneuvering target tracking system state equation and
the observation equation are as follows

Fx,, +Tu,,, sk<10
Fux, ., +Tu,,, 11 <ks<?325
Fx,, +Tu ,, 26<k<35

=y 61" +w,

yi = sart(x +5;)

0, = tan”' (y,/x,)
wherex, =[x, x, vy, 1", x,, %, ¥, and y, de-

note the location components and velocity components

of target state on the x-axis and y-axis, respectively.
F, =
r1 sin(w, 1)/ w, 0 - (1-cos(wT))/ w7
0 cos(w,T) 0 — sin(w, )
0 (1 -cos(wr7))/w, 1 sin(w, 1)/ w,
LO sin(w,T) 0 cos(w,T) J
and F, =
r1 sin(w,7)/w, 0 - (1 -cos(w,r))/w,7
0 cos(w,T) 0 — sin(w,T)
0 (1 -cos(w,7))/w, 1 sin(w,1)/w,
LO sin(w,T) 0 cos(w,T) J

denote system state transform matrix in which w, =
0.3rad/s” and w, = —0.2rad/s” are the turning angu-
lar velocity of target motion. the sampling interval 7 =
0.5. The system noise u, , and u, , adopt the Gaussian
white noise with means 0 and standard deviations 0. 21

and 0. 41 respectively, where I = [(1) (1)] Observation

noise v, is Gaussian white noise with means 0 and

.. [R .
standard deviation [ Y ] , where the noise standard

0
deviation of radial distance component R, is 0. 2km and
the noise variance of azimuth angle R, is 0. 1°. I" =
[TA2/2 T 0 O]T denotes the process noise.
0 0 7272 =

the cycle index of Monte Carlo simulation is 50, and
the number of simulation steps is 35. The number of
particles in PF is 1000,
time is 2, and the initial value of target state x, =
[15 0.8 8 0.3]".
adopts PC ( Pentium4 ( CPU) with main frequency
3.06GHZ, 2G memory, Windows XP)
gramming language is Matlab _ R2012a. Five algo-
rithms, IMM-EKF, IMM-UKF, IMM-CKF, IMM-PF
and IMM-ICKF are compared in the simulations, that
is, EKF, UKF, CKF, PF and ICKF are used as sub-
filter for the implementation of IMM.

and the maximum iteration
The experimental platform

and the pro-

Fig. 1 shows the real motion trajectory and the ob-
servation information of the target in the simulated ex-
With model probability as model
identification reliability index, Fig.2 to Fig. 6 give the

perimental settings.

model utilizations respectively of the filtering imple-
mentation of IMM-EKF, IMM-UKF, IMM-CKF, IMM-
PF and IMM-ICKF. Fig.7 and Fig. 8 show the compar-
ison of root mean square error (RMSE) of state estima-
tion of these five algorithms in 50 independent experi-
ments. From the model identification effectiveness of
these five algorithms given by Fig. 2 to Fig. 6, IMM-
EKF is clearly shown to have the poorest stability of the
accuracy, the essential reason of which is that IMM-
EKF cannot provide state estimation result with high
precision. Next, IMM-UKF is superior to IMM-EKF,
while IMM-PF and IMM-CKF are superior to IMM-UKF
to a certain degree, but the defect which these four al-
gorithms mentioned above have in common is that there
is large fluctuation of model identification in the filte-
ring implementing process. Compared with the other
four algorithms, IMM-ICKF improves the accuracy and
stability of model identification obviously. As is known
to all, in the IMM framework, the sub-filter with high
precision will support IMM to achieve the effective
identification of state evolution model at the current
time, and the accurate model identification will support
in turn sub-filter to obtain nice state estimation result
in the next time filtering, and the feature is reflected in
Fig. 7 and Fig. 8. Regarding to the filtering precision of
algorithms, according to the state estimation precision,
the ranking from the best to worst of all the five algo-
rithms is as follows; IMM-ICKF, IMM-PF, IMM-CKF',
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IMM-UKF and IMM-EKF. It is worthy noting that the
filtering precision of IMM-PF and IMM-CKF is similar,
and IMM-ICKF is better than IMM-CKF, the funda-
mental reason of which is that ICKF realizes improve-
ment of filtering estimation precision by introducing ob-
servation iterated update strategy. To quantitatively an-
alyze the filtering precision and real-time performance
of these five algorithms, their means of RMSE and av-
erage running time is compared in 50 independent sim-
ulations shown in Tablel, and the data of means of
RMSE describing algorithm filtering precision in the ta-
ble verifies the results analyzed above. In addition, in
the same simulation condition, regarding the time con-
sumed of these algorithms, IMM-PF take the first place,

30 T T T T : -
= Motion trajectory
28 | ~¥ Observation information

_—e = NN
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T T T T T T T
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Fig.1 The target trajectory and observation
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and IMM-ICKF comes to the second but with the high-
est precision. The above results are conducive to rea-
sonable selection of filters in practical engineering ap-
plications.
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Tablel The comparison for the mean of RMSE and
the average time over 50 independent runs
Algorithm H(.mzorltal \{ertl?al Time-consuming
direction direction

IMM-EKF 0.1925 0. 1867 0.0054
IMM-UKF 0. 1491 0.1478 0.0145
IMM-CKF 0.0830 0.0825 0.0182
IMM-PF 0. 0685 0.0677 1.4480
IMM-ICKF 0.0174 0.0167 0.0276

4 Conclusions

Maneuvering target tracking is always the hot spot
and difficulty of researches in target tracking field, this
paper gives a maneuvering target tracking algorithm
based on CKF with observation iterated update. CKF
presented in recent years is an efficient handling meth-
od to solve the problem of nonlinear system estimation.
In the framework of CKF, the CKF with observation it-
erated update is proposed by introducing the observa-
tion iterated update process. By synthesizing the results
of multiple parallel running filters which match the sys-
tem model, IMM can deal with the problems of uncer-
tainty and variation of system structure and parameters.
The novel algorithm realizes the effective identification
and estimation of pattern and state by means of dynami-
cally combining ICKF and IMM. Results from practical
simulation examples have verified that the proposed al-
gorithm with these effective measures is superior to the
existing IMM and its improved algorithms.
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