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Abstract

When a vehicle travels in urban areas, onboard global positioning system ( GPS) signals may
be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to
perform localization by registering ground images to a 2D building boundary map which is generated
from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from
the ground images. MFG was reported in the previous work to facilitate the robot scene understand-
ing in urban areas. By constructing MFG, the 2D/3D positions of features can be obtained, inclu-
ding line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature
weighted localization method is developed based on MFGs and the 2D building boundary map. The
proposed method has been implemented and validated in physical experiments. In the proposed ex-
periments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than

commercial GPS working in open environments.

Key words: visual localization, urban environment, multilayer feature graph( MFG) , voting-

based method

0 Introduction

Localization is a key component in many mobile
robot applications. GPS is popularly used for location-
awareness. However the measurement error of low-cost
GPS sensors for civil services may be up to tens of me-
ters. Especially when working in an urban area, the
GPS signal may be disrupted by high-rise buildings and
When a mobile robot
equipped with a GPS sensor is traveling in urban envi-

becomes more unreliable.

ronments, it can only obtain the inaccurate GPS data,
which can only provide the robot with a rough location
region in the 2D map, as shown in Fig. 1, where the
dashed circle represents the potential location region
obtained from inaccurate GPS data, triangle A in
Fig. 1(b) from multi-pair of camera frames taken at
two different locations of A and B in succession, given
the inaccurate GPS data and a 2D top-down view build-
ing boundary map which is extracted from Google Maps
in our experiments. Thus, it is needed to further deter-
mine the accurate location of robot A with the aid of

other sensors. As cameras become small and cheap),
the focus in this work is to develop an accurate visual
localization method for mobile robots working in urban

environments.

Fig.1 Estimating camera location

Ref. [1] reported MFG to facilitate the robot
scene understanding in urban area. MFG also connects
the features in two views and the corresponding 3D co-
ordinate system. An MFG is constructed from overlap-
ping and dislocated two views and contains five differ-
ent features ranging from raw key points to planes and
vanishing points in 3D. By constructing MFG, the 2D/

(@D Supported by the National High Technology Research and Development Program of China ( No. 2012AA041403 ), National Natural Science
Foundation of China (No. 60905061, 61305107 ), the Fundamental Research Funds for the Central Universities ( No. ZXH2012N003 ) , the
Scientific Research Funds for Civil Aviation University of China (No. 2012QD23x).

2 To whom correspondence should be addressed. E-mail; wanghp@ robot. nankai. edu. cn; lihf_cauc@ 126. com

Received on Apr. 25, 2013



32

HIGH TECHNOLOGY LETTERSIVol.21 No.1[Mar. 2015

3D positions of features can be obtained including line
segments, ideal lines, and all primary vertical planes.

It is an immediate application to employ MFG for
localization applications. In this paper, MFG is ap-
plied to robot localization, given a 2D map with build-
ing outlines in top-down view with no 3D geometric in-
formation or appearance data. The 2D building outline
map is extracted from Google Maps in our experiments.
The proposed method has been implemented and vali-
dated in physical experiments. The localization error of
the proposed algorithm in physical experiments is

around 2m.

1 Related work

230 utilizes images taken from

Visual localization
on-board camera (s) to estimate the robot location.
The ability of accurate localization is an essential build-
ing block of robot navigation'*' and simultaneous locali-
zation and mapping ( SLAM) ',

Visual localization can have different camera con-
figurations including omnidirectional camera and stereo
vision systems. In Ref. [6], a fast indoor SLAM meth-
od using vertical lines from an omnidirectional camera
was proposed. Nister et al. developed a visual odome-
try system to estimate the ego-motion of a stereo
head"”.

camera is employed.

In the proposed method, a regular pinhole

A way of classifying visual localization methods is
based on what kinds of features are used. Point fea-
tures, such as Harris corners, scale invariant feature
translation ( SIFT)", and speed up robust feature
(SURF) points® are the most popular and reliable
ones. Many researchers developed their point feature-

10,11]
*.  However,

based visual localization methods'
compared with line features, point features usually con-
tain more noise and result in high computation cost due
to their large amount. Line features are easy to ex-
tract' ™’

tion or shadows. Therefore, many visual localization

more robust, and insensitive to lighting condi-

applications employed line features and achieved quite

[13-15] 1

16,17]
accurate results . Several recent works''®'" recon-

structed building facades to localize robots in urban

. 18
scenes. Delmerlco(

! proposed a method to determine
a set of candidate planes by sampling and clustering
points from stereo images with random sample consen-
sus (RANSAC), using local normal estimates derived
from principal component analysis ( PCA) to inform the
planar model. This method is a point-based method
whose shortcomings have been discussed above.
Cham'"" tried to identify vertical corner edges of build-

ings as well as the neighboring plane normals from a

single ground-view omnidirectional image to estimate
the camera pose from a 2D plan-view building outline
map. However, this method is not robust for plane

Those

methods provide the inspiration that planes are impor-

analysis due to missing vertical hypotheses.

tant and robust features to be extracted in reconstruc-
tion and localization. Furthermore, a very recent
work ") developed a footprint orientation ( FPO) de-
scriptor, which is computed from an omnidirectional
image, to match in 2D urban terrain model that is gen-
erated from aerial imagery to estimate the position and
orientation of a camera.

A number of papers have addressed the problem of
matching ground view images to aerial images'"’, but
they assume that 3D models in the aerial image are
available, and focus on specific buildings rather than a
broad search across the entire aerial image. Tracking
using line correspondences between ground view video
and an aerial image was carried out in Ref. [3].

The research group has worked on robot navigation
using passive vision system in past years. A vertical
line-based method for visual localization tasks'™' has
been developed. In recent work''', an multilayer fea-
ture graph (MFG) was reported to facilitate the robot
scene understanding in urban area. Nodes of an MFG
are features such as SIFT feature points, line seg-
ments, lines, and planes while edges of the MFG re-
presented different geometric relationships such as ad-
jacency, parallelism, collinearity, and coplanarity.
MFG also connects the features in two views and the
corresponding 3D coordinate system. The localization

method based on MFGs will be shown.

2 System architecture and problem defini-
tion

2.1 System architecture and assumptions

Fig. 2 illustrates the system architecture. The pro-
posed approach consists of off-line map generation and
on-line robot localization. There are two main steps in
off-line map generation: (1) Extracting an aerial im-
age where the robot locates from the aerial image data-
base based on the inaccurate GPS data, and (2) Gen-
erating a 2D map from the aerial image. On-line robot
localization consists of three main steps: (1) Construc-
ting MFG from each pair of overlapped camera images;
(2) Conducting the perspective projection to obtain the
2D building facade outlines with line features on them
from the top-down view; and (3) Estimating the robot
location using a voting-based method based on the 2D
map and the MFGs after perspective projection. These
steps are illustrated in Fig. 2 and each step is described
in detail in the following sections.
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Fig.2 System architecture

To formulate the problem and focus on the most
relevant issues, the following assumptions are devel-
oped.

® The 2D map is up-to-date.

® The intrinsic parameters of the finite perspec-
tive camera are known by pre-calibration. The lens
distortion has been removed.

® The robot knows its relative movements be-
tween places where two views are taken, which can be
achieved with on-board inertial sensors or wheel en-
coders. These sensors are good at short distance meas-

urement. This assumption is for the construction of

MFG.

2.2 Problem definition

In this paper, all the coordinate systems are right
hand systems. The superscript denotes the correspond-
ing notation in the second view. For example, nota-
tions in the format of (a,a’) refer to a pair of corre-
sponding features across two views.

® Define { W!| as a 3D Cartesian world coordinate
system (WCS) with its x-z plane horizontal and y- axis
pointing upwards.

® Define {C} and {C'! as two 3D Cartesian
camera coordinate systems ( CCS) at the first and sec-
ond views, respectively. For each CCS, its origin is at
the camera optical center, its z- axis coincides with the
optical axis and points to the forward direction of the
camera, its x- axis and y- axis are parallel to the hori-
zontal and vertical directions of the CCD sensor plane,
respectively.

® Define {I} and {I

nate systems (ICS) at the first and second views, re-

'} as two 2D image coordi-

spectively. For each ICS, its origin is at the principal

point and its u- axis and v- axis are parallel to x and y
axes of { C! , respectively.

® Define ¥ = {F,,--,F | and F" = {F', -+,
F' | as two image sets captured at two different posi-
tions, such as A and B in Fig. 1, respectively, with
each element F; € F and F’,
and F',,
sufficient overlap.

e F' being an image. F,

i =1,--+,nare one pair of camera frames with

® Define X as the estimated robot location in
{W! when taking F. Denote X = [x,z]",
is the robot location on the x-z plane of { W}.

With these notations defined, definition is the fol-
lowing.

Definition 1. MFG-based Localization: Given
F and F', the inaccurate GPS data and a 2D building

boundary map from top-down view, construct MFGs to

where (x,z)

estimate X.
3 Approach

3.1 Aerial image extraction and map generation

The publicly available Google Maps are chosen as
the proposed aerial image database. Based on the GPS
data, it can be easily to obtain the aerial image where
the robot locates from the database.

Building boundaries are good features to be used
for localization applications in urban environments be-
cause they can be detected in both aerial and ground
images. The aerial image used in this paper is at a res-
olution of approximately 3.5 pixels/m. It allows our lo-
calization system to obtain sub-meter position accura-
cy. In the previous work ™’ | an automated method to
create 2D building boundary map from an aerial image
was introduced. However, the 2D maps generated from
the automated methods are not perfect for the following
streets and

reasons. (1) The obstruction from trees,

other things in aerial images; (2) The aerial image
that we used are not exact orthographic images, so
there are errors due to the perspective. Thus, after the
automated map generation, we modify the results man-
ually to obtain higher accuracy. A 2D map, denoted as
M, consists of a set of m building facades, s,,s,, -,
(p?, pl). Here, (p!, p!) denotes the 2D

points of the facade s projection onto the ground plane

s, , withs; =

(the point coordinates in the aerial image). We do not
consider the heights of the facades because they cannot
be observed from aerial images.

The building facades in a 2D map M can be classi-
fied into three types according to their visibility. Define
p° as the camera center’ s projection onto the ground
plane (the point coordinate in the aerial image). As

shown in Fig.3, the camera’s field of view is the re-
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gion between the two rays starting from p°. A building
facade s, = (p?, p!) is visible if both p! and p! are in
the camera’s field of view, and either the line segment

p°p! or line segment p°p! does not intersect with any 5;
e M, j # i; Building facade s, is partly visible if there
exists a sub-line segment s; on s; such that s; is visible;
Otherwise, s, is defined to be invisible. As shown in
Fig. 3, p° is the projection of camera center, then s, is
visible, s, is partly visible, and s, is invisible.

Fig.3 Visibility of building facades in a 2D map

3.2 Multilayer feature graph construction

Since the proposed visual localization algorithm is
based on MFGs, it will be to start with a brief review of
MFG, which was firstly presented in the previous
work' ", Fig. 4 illustrates how MFG organizes different
types of features according to their geometric relation-
ships. MFG is a data structure consisting of five layers
of features, i.e., key points, line segments, ideal
lines, vertical planes and vanishing points. Edges be-
tween nodes of different layers represent geometric rela-
tionships such as adjacency, collinearity, coplanarity,
and parallelism. MFG also connects the features in two
views and the corresponding 3D coordinate system.

vanishing
points

parallelism

vertical
planes

coplanarity

collinearity
line
adjacency

SIFT
points

Fig.4 The structure of an MFG

In an MFG, key points and line segments are raw
features extracted from images using methods like
SIFT™®! and line segment detector (LSD)'™'  while
other layers of features are estimated based on them. In
Ref. [ 1], a feature fusion algorithm is presented to

construct an MFG based on two views by verifying the
geometric relationships incrementally, iteratively, and
extensively. As an important part of MFG, the algo-
rithm is able to detect all primary vertical planes and
line features in them with a reasonable accuracy. In
this work, the localization application using MFGs will
be focused on.

3.3 Perspective projection

Since the building boundary map obtained from
the aerial image is a 2D map, it also needs to project
MFGs to the 2D ground plane to prepare for the follow-
ing matching. The vertical planes in MFG are parallel
to y- axis in { W| (and therefore also the ground plane
normal ) , thus, the problem reduces to a 1D perspec-
tive projection.

MFG contains the 3D formats of line segments and
vertical planes in { W}. By projecting all entities, such
as vertical planes and line segments, to the ground
plane, we can obtain the perspective projection of an
MFG, denoted as P. Under the projection, each verti-
cal plane 77, becomes a line from top-down view, deno-
ted as 4. Note that since MFG cannot provide the
boundary of vertical plane, the projection of a vertical
plane is a line instead of a line segment. Define L! =
{L]/-lf ,jellandL’ = {.'}, r e I'as the projections of
3D horizontal and vertical line segment sets lying in
vertical plane 7, , respectively, where I' and I are the
index sets with which the horizontal and vertical line
segments lie in 77,. After the perspective projection,
the horizontal line segments are still line segments
while the vertical line segments become points, as
shown in Fig.5, the thin lines denote the vertical
planes’ projections, the thick line segments and points
denote the horizontal and vertical line segments lying in

the vertical planes, respectively.
£,

£,

Fig.5 Perspective projection of an MFG

3.4 Feature-weighted localization using a single
MFG

After the perspective projection step, the localiza-

tion problem using a single MFG converts into matching
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P into M to find the accurate camera location X.

The matching criterion is; the total overlapped
length between vertical/horizontal line segment features
in P and building facades in M is maximum. Fig.6
gives an illustration of matching evaluation. Due to the
construction error of MFG after perspective projection,
LJ/-” may be not exactly lying on 4, so L;’ is projected onto
/4. The overlapped part between the projection and s, is
defined as ¢, , while the non-overlapped part is defined

as t; .

points after perspective projection. These points are

The vertical line segments ¢; and t; become

projected onto /4. If the projection of ¢! lies on s, , it is

called that ¢! is on's,. In Fig.6, ¢ is ons,, while ¢; is

to

not ons,.

1 11

= S
o th t ;:1 > ‘

Fig.6 An illustration of matching evaluation

Thus, a matching evaluation function between le~1

e L ands, € Mis defined as

Q" (y,s,) = { 0

[ I (7

if s, is invisible

otherwise

(D)

where ¢, and ¢/, are two line segments, representing the

overlapped and non-overlapped parts between the pro-

jection of L]]-’ and the visible part of s,, respectively, as

shown in Fig. 6, where it shows the case that s, is visi-
ble. || - || denotes the length of a line segment.

Similarly, as shown in Fig. 6, a matching evalua-

tion function between ¢, € L; ands, € M is defined as

v eIl s
L, ,s,) = _ 2
e =y )

/" is defined as an index set for /; e P such that

if (] is on's,

otherwise

. , y . y
Vi e /", /, has at least one correspondence in M".

Similarly,, /~ is defined as an index set for /; € P such

that Vj € /7, 4 has no correspondence in M.

Note that the baseline distance between two views
obtained from onboard sensors is inaccurate. Thus P is
up to scale by a scalar A € [A,A], where A and A,

determined by the error range of measured baseline dis-
hoA

j ’
jelland ', r e I are defined as the line /£, line

i

tance, are the lower and upper bounds of A. /7, ¢

segments le»l and ¢, at scale level A, respectively.

The total matching evaluation function is defined

as
Sez,d) = >0 > Qs ) + > > Q)
aest el cest el
spes(4) spes(4)

h,
=2 > g+ et i),
bEfL/hELﬁ

wely
sl ASA<A (3)
where (x,z) is the camera location, and s(/*) denotes
the corresponding building boundary set of /* € M.

In Eq. (3), the first two terms are to evaluate the
overlapping between horizontal/vertical line segments
in P and building boundaries in M, and the last term is
to demonstrate the case that there is no building bound-
ary in M corresponding to vertical plane 7r,.

Therefore, the localization problem using a single
MFG based on the map query can be converted into the
following optimization problem,

arg max f(x,z,A) (4)

The above optimization problem can be solved
using the Levenberg-Marquardt algorithm ',

By now, the camera location can be obtained from
an MFG and a 2D building boundary map by solving
the above optimization problem. However, this method
can not guarantee the correctness of solution. In the 2D
building boundary map M, if there exist more than one
group of similar building boundaries that can match
with P, maximizing Eq. (4) directly may lead to the
wrong solution. The case will happen more likely when
the number of vertical planes in P is small. To solve
this problem, a voting-based camera position estimation
method is proposed as follows.

3.5 Voting-based localization using multiple MFGs

In the voting-based localization stage, first, the
2D building boundary map is divided into a N, x N,
grid G and define a zero-initialized N, x N, accumulator
array Acc correspondingly. Denote (x,,z,) as the center
of G(i, j). In the proposed voting-based method, each
MFG does not only determine one solution from
Eq. (4). Instead, each MFG can provide multiple
candidate solutions. Traverse G, and set G(i, j) as a
candidate solution region if

g(x, 9Zj)

I > T, (5)
where f, ~ is the maximum value obtained from
Eq. (4), T, is a specific ratio threshold, and

g(xi’zj) = a}:g max f(x;, Zjs A)

Correspondingly, Acc(i, j) increments by 1 if
G(i, j) is selected to be a candidate solution region.
In order to obtain the correct and optimal camera posi-
tion, the combination of candidate solutions with the
best consensus obtained from different MFGs must be
determined. Thus, the candidate solution region with
the largest score (number in Acc ) is selected as the



36

HIGH TECHNOLOGY LETTERSIVol.21 No.1[Mar. 2015

correct solution region. The final optimal solution is
determined based on Eq. (4), and the only difference
is that multiple MFGs are utilized here and the search-
ing region is within the sub-region with the largest
score.

The proposed voting-based camera position esti-
mation method using multiple MFGs is described as Al-
gorithm 1.

Algorithm 1: Voting-based Localization using MFGs

Input : F and F’
Output: Camera position X

Generate G in the building boundary map;
Initialize a 2D accumulate array Acc;
for each pair of camera frames F; € F and F] € F' do
Construct MFG from F; and F;
Perspective projection for the MFG;
Determine the candidate solution region from the
MEG by Eq.(5);
7 Find largest scoring bin 4cc(i,j) in Acc to get X based
on Eq.(4) using all MFGs by searching within G(7,j);
return X.

(= 7 I VI SR

@

4 Experiments

The proposed visual localization method has been
implemented by using Matlab 2008b on a laptop PC.
In the physical experiments, a BenQ DCE1035 camera
with a resolution of 1095 x 821 pixels is used. It is to
run 7 tests (A,,B,),i = 1,---,7 on a university cam-
pus, as shown in Fig.7, where points A;,i = 1,---,7
denote the first positions in each test to take pictures,
respectively, and points B;,i = 1,---,7 are the second
positions to capture pictures, respectively. For the five
tests (A,,B,) — (A;,B5), 4 pairs of camera frames
are taken with significant overlapping in each test. For
the other two tests (44,Bs) and (A,,B,), 3 pairs of
camera frames are taken in each test. The baseline dis-
tance between two positions in each test is measured
with a tape measure. The orientation settings of the
camera are set to ensure a good overlapping between
each pair of images. In order to determine the ground
truth of camera positions, the relative distances from
the camera center to the surrounding building facades
are measured using a BOSCH GLR225 laser distance
measurer with a range up to 70m and measurement ac-
curacy of +1.5mm. Considering the localization error
of GPS in urban environments, the whole searching re-
gion is set to be 150m x 150m, centered at GPS data.
G is set to be 60 x 60, with the size of each sub-region
being 2.5m x2.5m. Threshold T, is set to be 0. 7.

o

Fig.7 Positions and orientations of camera in 7 tests

4.1 MFG construction results

The proposed algorithm has successfully construc-
ted MFGs. As a sample output, Table 1 shows the ver-
tical plane identification results and the accuracy of
vertical plane reconstruction in test (A,,B,). Denote
ar; and 77, as the estimation from the MFG construction
and the ground truth of vertical plane 7;, respectively.
Ground truth 77, is obtained by using three non-collinear
3D points lying in 77,.

According to Ref. [ 1], directly comparing 7, with
77, is not meaningful because the result depends on the
coordinate system and unit selections. To avoid the
problem, the 3D point reconstruction error is utilized in
comparison. Define x; as a 2D image point lying in 7.
With the aid of camera intrinsic parameters and plane
equations, this point can be reconstructed from 7, and
a, , respectively. Let X and X]- be the corresponding re-

|| Xj - Xj ||
sults. A relative error metric is defined as ————
X1

where || || represents the Euclidean distance. For
each vertical plane, 20 image feature points are select-
ed manually as even as possible to cover the whole
plane region in the image. The mean value and stand-
ard deviation of the relative errors are shown in Table 1
for the four image pairs in test (A,,B,).

Table 1  Percentile relative errors of the reconstructed 3D points
T T T3
No.
mean std. dev. mean std.dev. mean std. dev.

1 2.37 0.28 3.29 0.91 — —
2 2.88 0.33 3.14 0.59 — —
3 4.76 1.14 3.93 0.96 5.05 0.62
4 412 0.81 2.49 0.54 — —

Table 1 gives a sample output where the MFG
construction algorithm has identified vertical planes in
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the images, which results in the different numbers of
vertical planes for the image pairs in test (A,,B,).
The relative errors of points on planes are reasonably
small which indicates that the estimated planes are rea-
sonably accurate.

4.2 Voting-based localization results

To informally evaluate the effectiveness of our vot-
ing-based localization method, solution uniqueness is
inspected by visualizing scores in a 2D robot-position
version of the accumulator array. An example result is
shown in Fig. 8. Given only one bin with the highest
score, it is evident that final solution is unique.

J1 ]2 W3 M4

Fig. 8

Example distribution of camera position scores in a 2D
position version of the accumulator array, with 2D map

overlay. Arrow shows ground truth position.

The MFG-based localization method is compared
with the line-based method'"'. Table 2 shows the lo-
calization errors using the two methods, respectively.
From the table we can conclude that, both methods can
localize the camera correctly in all tests. The localiza-
tion errors of the MFG-based method are obviously
smaller than those of line-based method. And in com-
parison with the ground truth, all the localization errors

Table 2 Comparison of localization errors between MFG-based

and line-based methods

Test ID. MFG-based (m) Line-based (m)
(A, B) 2.1 4.3
(A, By) 1.6 3.4
(A, By) 2.6 4.4
(A4, By) 1.7 3.5
(As, Bs) 2.3 3.9
(Aq, Bg) 2.4 4.1
(A, B) 2.8 4.6

using the proposed MFG-based method are no more
than 2. 8m, and the average error is 2. 2m. This result
is superior to that of the standard positioning service by
GPS. The localization error is caused by many factors,
such as MFG construction error and map generation er-

ror.
5 Conclusions

A robust visual localization method is reported
based on MFGs and a 2D top-down view building
boundary map. By constructing MFGs from camera
frames, the 2D/3D positions of multiple features, in-
cluding line segments, ideal lines, and all primary ver-
tical planes are obtained. A voting-based map query
method has been proposed to find the accurate location
of camera in the 2D map. The localization method has
been implementedand tested in the physical experi-
ments. Results showed that the localization error of the
proposed method is around 2m, which is better than
commercial GPS working in open environments. More
experiments will be done in the following, and it is also
planed to integrate the proposed approach with other lo-
calization methods and sensors.
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