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Abstract

There is one problem existing in gyroscope signal processing, which is that single models can’ t

adapt to change of carrier maneuvering process. Since it is difficult to identify the angular motion

state of gyroscope carriers, interacting multiple model (IMM) is employed here to solve the prob-
lem. The Kalman filter-based IMM (IMMKF) algorithm is explained in detail and its application in
gyro signal processing is introduced. And with the help of the Singer model, the system model set of

gyro outputs is constructed. In order to demonstrate the effectiveness of the proposed approach, stat-

ic experiment and dynamic experiment are carried out respectively. Simulation analysis results indi-

cate that the IMMKEF algorithm is excellent in eliminating gyro drift errors, which could adapt to the

change of carrier maneuvering process well.
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0 Introduction

The micro electro mechanical system ( MEMS)
gyroscope is a kind of inertial measurement devices
widely used in stabilized platform control system, iner-
tial navigation system, etc. But at present, the preci-
sion of MEMS gyroscope is not so good, therfore MEMS
gyroscopes are always applied in the middle level sys-
tems. In order to extend the application range of
MEMS gyroscopes, the performance should be im-
proved with some methods of filtering or compensation ,
and now this has been the main research content''’.

All MEMS gyro output errors can be classified into
two parts, the steady error and the stochastic noise.
Steady error can be represented with algebraic equa-
tions, and is easy to be compensated because of its
regularity'?’. Stochastic noise is the major influencing
factor of gyroscope precision, and the main method of
improving gyroscope performance is to carry out model
identifying and filtering aiming at stochastic noise''".
Efforts have been made to study eliminating methods

171 and two main approa-

for gyro random drift errors
ches are obtained. One is to find out the error math-
ematic characters, and compensate according to the er-
ror mathematic models. The other one is to filter for
gyro output signal directly, and the elimination of gyro
drift errors is achieved with the signal de-noising tech-
nology. When using the first method, the AR and AR-
MA models are always employed to create models for
the zero-bias data of gyroscopes. But gyro random drift
is weakly nonlinear, non-stationary and slowly time-va-
rying. Hence in order to use AR model or ARMA mod-
el, the drift data pre-processing should be finished
firstly. It is argued in Ref. [1] that when using Kal-
man filter with the AR(1) model, the mean value and
standard deviation of errors after filtering are much
smaller than before in the case of static state or con-
stant angular rate, but when it is in an oscillating
state, with the oscillating amplitude increasing, the
mean value and standard deviation of errors would be
increasing too. And it is pointed out in Ref. [7] that
the signal de-noising method of filtering directly for
gyro drift is feasible. The approaches of wavelet analy-

(@ Supported by the National High Technology Research and Development Program of China ( No. 2012AA061101) , the Key Laboratory of Intelli-
PP Y g gy P 2 ) ry
gent Perception and Systems for High — Dimensional Information ( Nanjing University of Science and Technology) , Ministry of Education ( No.

3092013012205).

2 To whom correspondence should be addressed. E-mail; lujianshan@ hotmail. com

Received on June 18, 2013



HIGH TECHNOLOGY LETTERSIVol.20 No. 4 |Dec. 2014

437

sis and neural network are always employed when filte-
ring directly, but the model orders obtained with these
approaches are usually high, hence they are not suit-
able for real-time estimation. Besides, it is difficult to
identify the angular motion state of gyroscope carriers
in the actual working progress, and using one single
model with fixed parameters to model gyro outputs may
cause a great error. Since single model can’t adapt to
the change of the carrier maneuvering process, the in-
teracting multiple model (IMM ) algorithm would be
employed to deal with gyro signal processing. IMM al-
gorithm is a software handover algorithm, and has been
successfully applied in the fields of maneuvering target
tracking and integrated navigation systems*'''. IMM
algorithm uses two or more models to represent the pos-
sible states in the working progress, and the overall es-
timated state is obtained by weighted mixing all model
estimates , hence the IMM algorithm can solve the inac-
curacy problem of single model effectively. In the pa-
per, after the gyro output model set of static state and
dynamic state is constructed with Singer model, the
Kalman Filter-based IMM ( IMMKEF') algorithm would
be used to filter for gyro outputs, and at last some ex-
periments would be carried out to test this newly pro-
posed approach.

1 The Kalman filter-based IMM algorithm

IMM algorithm is a circular recursion algorithm,
and in one cycle, different filters based on each single
model run in parallel. The overall estimate is obtained
by weighted mixing all model estimates. In each cycle,
there are four major steps: initial states mixing, KF-
based filtering, model probability update, and output
estimates mixing'"*’. The algorithm with two models is

illustrated in Fig. 1.

k=0 J
n model
Xy (k1) probability
P(k-1) initial update

states l u, (k)

- mixing .
X,(k-1) output X (k)
B e |

Fig.1 Frame diagram of IMM algorithm (two models)

(1) Initial states mixing

When there are not restrained conditions, trans-
formations between every two models are carried out
based on the Markov chain theory. And the initial state
X,(k —1) and covariance matrix P, (k — 1) for filter i

at time k are calculated by

Xy (k-1) = 22j<k—1mﬁ<k—1> (1)

P,(k-1) Zﬂﬂ(k D[P(k-1) +(X(k-1)
Xm(k—l))(X(k—l)

- X, (k-1))"] (2)

where N is model number, X is state estimate for filter j
and P; is the corresponding covariance matrix. w; is
model

probability and can be represented as

1
/-“ji(k -1) = Eﬂjiuj(k -1)

N

2 w(k-1)

(2) KF-based filtering
For model i, with the mixed initial state X, (k —1)

and the corresponding covariance matrix P, (k — 1),

0 <m; <1
with{ .

ZWﬁ =1

Kalman filter is employed to give the state estimate and
the updated covariance matrix at time k. Here we give
the Kalman filtering equations.

(Dlnitializing state vector and state covariance ma-
trix

X(klk-1)

P(kl kE-1)

@, (kb = DX (k=1) (3)

D,(kk-1)Py(k-1)

(@, (k,k~1))" +T(k-1)

Q,(k-1)(I(k-1))" (4)

@ Computing Kalman gain matrix

K, (k) =P (k1 k _1>(Hi(k>)T[Hi(k> :

P(klk-1)(H (k)" +R (k)]

(5)

(3 Multiplying prediction error vector by Kalman

gain matrix to get state correction vector and update
state vector

X.(k) =X(kl k-1) +K,(k)[Z,(k)

~H.(K)X (k! k-1)] (6)

@) Updating error covariance

P.(k) = [1 - K.k H,(K)IP,(kl k1) (7)
where @, , I'; and Q, are slate transition matrix, noise
drive matrix, system noise covariance respectively, and
H., R, are measurement matrix and measurement noise
covariance respectively.

(3) Model probability update

When the residual of model i at time k is zero-
mean Gaussian white noise, likelihood function A; (k)

can be represented as
A = /2T ST expl = 5(6,(0)'S, (R, (k)]
(8)

where g; is the residual and S, is its covariance matrix.

Then the model probability u, is updated by
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(K)C.
w(k)y = 2 BE (9)

> AKC,

(4) Output estimates mixing

Finally the overall state X(k) and covariance
P(k) are obtained by weighted mixing the estimates of
different filters.

X(k) (10)

2ii<k>ui<k>

=

P(k)

S u (R [P(K) + (R(E) - R(k))

(KR - KO (11)

2 System model set of gyro outputs

The singer model is employed here to construct a
system model set of gyro outputs. In the fields of ma-
neuvering target tracking and integrated navigation sys-
tems, position, velocity and acceleration are always
used as state variables to construct three-dimensional
models while position is the observed value. When
using the Singer model to construct system models for
gyro outputs, the observed value is angular rate, and
estimating for angle value obtained from integration of

angular rate is meaningless'”’.

Hence two-dimensional
models which only use angular rate and angular accel-
eration as state variables will be presented in the pa-
per, and dimension decrease will reduce calculation
Let T be the
sampling period, the discrete Singer model can be re-
presented as follows.

X, (k) = @,(kk-1)X,(k-1) + W,(k)

complexity and calculation time, too.

(12)
Zi<k) = Hl(k)X;<k> +Vi(k) (13)
1 o T
where H, = [1 0],®, = ! ;,(1_6 ) , and

0 efalT
«; is the inverse of maneuvering time constant, namely
maneuvering frequency. W, is the process white noise
vector and V, is the measurement noise vector, Q, =

E[WW'] =2u,0 [(]11 ‘]12] , 0, is the variance of

ai ai

di, q»
maneuvering acceleration.

B = (AT =3 =T 20T,
Q;

1

ﬁ(eizaﬁ +1 - Zeia‘T) ,

q =

1 24
qn = 2701,;(1 - 2LT)-

Maneuvering frequency «, is a small positive num-
ber under the static condition (the first model) , and

the maximum of absolute value of angular acceleration
would not be great, too. So the positive angular accel-
eration can be limited to 1.5deg/s’"*’. When under
the maneuvering condition ( the second model ), ma-
neuvering frequency o, will be greater than o, , and let
a, be equal to 10a,. Besides, thinking of the experi-
mental situation, the maximum of positive angular ac-

celeration would be taken as 300deg/s’.
3 Experiment analysis

In order to test the effectiveness of IMMKEF algo-
rithm, experiments and analyzation are carried out.
Fig.2 is a gyroscope original signal curve under static
condition and its power spectral density (PSD). From
PSD curve, it can be seen that, besides the low — fre-
quency signals of high energy density, there still exists
high — frequency noises. After gyro outputs are collect-
ed by the serial interface of upper computer, MATLAB
software is used to do filtering analysis. MATLAB soft-
ware operates on a Windows system with Intel(R) Core
(TM)2 Duo CPU and 2.0GB memory. When filtering
with IMMKEF algorithm, probabilities of the two models
are set as u,(0) = u,(0) = 0.5 at the initial time.
And Fig. 3 is part codes of the IMMKF algorithm in the
main loop. In order to make a comparative analysis,

Moving filier'?! and Kalman filter are applied to filter
When filtering with Kalman filter,

AR(2) model is used for random drift error modeling.

drift error, too.

o
E
9
£ 0.02
|
0 . f .
< 0 500 1000 1500 2000
Data length
10 :

=301 1

0 10 20 30 40 50
Frequency (Hz)

Power spectral density(dB)

Fig.2 Curves of gyro outputs and PSD

3.1 Static experiment

The static experiment is carried out firstly. An at-
titude and heading reference system ( AHRS) is fixed
on a stabilized platform, and kept motionless. The
MEMS gyro outputs are sampled at a frequency of 10Hz
after AHRS have been operating for one hour. Take
1000 data points of X-axis gyro to analyze. After fin-
ishing the constant drift compensation with mean esti-
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mation method, the algorithms mentioned above are
employed to filter for gyro outputs. Error curves before
and after filtering are shown in Fig.4, and IMMKF
probability changes in the static experiment are given
in Fig. 5.

49 - for k=lim
50 % Stepl Initial states mixing

51 - c_1=pai (1, 1)#nin_Cpai (2, 1)*miu CA;  c_2=pai (1, 2)#miu_CV+pai (2, 2) #miu_CA;
52 - miull=pai(1, 1)*niu CV/c_1;  miul2=pai(1,2)*miu_CV/c_2;

63 - miu2l=pai (2, 1) #miu_CA/c_1; miu22=pai (2, 2) #miu_CA/c_2;

54 - E1=X1lemind 14822omin21;  Pl=(P11+(X11-K1) % (£11-X1)" ) wmiul 1+ (P22+ (£22-K1) % (§22-X1)" ) wmiu21;
56 - E2=X1leminl2+822omiu22;  P2=(P11+(X11-2)» (£11-K2)" ) wmiul 2+ (P22+ (£22-K2) » (£22-X2)" ) snin22;
56

67 ¥ Step2 KF-based filter

58 SNNIN Model 1 HANHN

59

60 - Xel(:,k)=X1; % Model | outputs

61 AANNS Model 2 HAKIN

62

63 - Xe2(:,k)=K2; % Model | outputs

64

65 % Step3 Wodsl probebility update

66 - Likel=exp (-0. 5#zk1’ xinv (Pzz1) xzk1)/ (sqrt (det (2xpisPzz1))) ;

67 - like2=exp (-0. 5#zk2’ *inv(Pzz2) *xzk2)/ (sqrt (det (2xpi*Pz22))) ;

68

69 - ©_1=pai (1, 1)#min_CPpai (2, 1)*miu CA;  c_2=pai (1, 2)#miu_CV+pai (2, 2) #miu_CA;
70 - c=likelsc_l+like2sc_2;

- miu CV=likelc_1/c;  miu_CA=like2xc_2/c;

72 - -

73 % Stepd Output estimate:

- E=Xl#miu_CP+2+nin_CA;

76 - Xe(:,k)=K; ¥ Output

76 - miul ()=miu CV;  miu2(k)=miu_CA;

7= XlI=El;  X22:X2;

78 - P11=P1; P22=P2;

Fig.3 Part codes of IMMKF algorithm
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Fig.5 IMMKF Model probabilities of static experiment

From Fig. 4 it can be found that errors after filte-
ring are significantly decreased in the static experi-
ment, and all the three filtering methods have a good
eliminating performance for gyro static drift errors. The
performance of Kalman filter is a little better than Mov-
ing filter, but IMMKF is the best obviously, and the
error curve after IMMKF filtering is smoother than the
ones after Moving filtering and Kalman filtering. From
the results of error statistical analysis in Table 1 we can
see that, maximum error and root mean square ( RMS)
error  before  filtering is  0.4860deg/s  and
0.1136deg/s, but after IMMKEF filtering they are down
to 0. 1142deg/s and 0.0326deg/s respectively, hence
the precision is improved greatly. Fig.5 illustrates
that, when IMMKF filtering is started, probability of
the first model (the static model) increases from initial
probability of 0.5 to stable probability rapidly which is
high to 0.959. And in the IMMKF filtering process,
the first model is in the dominating position all the
time, so it is concluded that the IMM algorithm can
choose the right model and assign a higher model prob-
ability according to the system states.

Table 1  Results of error statistical analysis
Methods Before - Moving KF  IMMKF
Filtering Filter
Maximum
4 -0.2157 . 1961 L1142
Frror ( deg/s) 0. 4860 0.215 0.1961 0
RMS Error
0.1136 0.0592 0.0484 0.0326
(deg/s) ’

3.2 Dynamic experiment

In order to test the performance of IMM algorithm
under the maneuvering condition, the dynamic experi-
ment is carried out in an open water lane whose size is
110m x2.5m x 2. 5m. The same gyroscope is used to
collect information of the man-made wave at a frequen-
cy of 50Hz. Take 10000 data points of X-axis gyro to
be analyzed. Original signal curve under the maneuve-
ring condition and the signal curves after filtering are
shown in Fig. 6. The PSD curves before and after filte-
ring and the IMMKF probability changes in the filtering
process are shown in Fig. 7 and Fig. 8 respectively.

By comparing curves in Fig. 6, and with Fig. 7, it
can be seen that the performance of Kalman filter is
still a little better than Moving filter, but both of their
eliminating performance are not good enough. On the
other hand, noises at the whole frequency range are all
attenuated by IMMKF, and the noise PSD in high fre-
quency band is decreased 10dB approximately after IM-
MKF filtering. Hence IMMKEF still has a good elimina-

ting performance under the maneuvering condition.
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From Fig. 6 and the experiment process, one knows
that at the beginning the wave is violent, and then
turns to a relatively calm state at about the 5450th sam-
pling point. Fig. 8 illustrates that, the probability of
the second model is dominating under the seriously ma-
neuvering condition, and its value changes with the
wave amplitude oscillating. And then the probability of
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Fig.6 Gyro outputs before and after filtering
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Fig.8 IMMKF Model probabilities of dynamic experiment

the first model becomes bigger under the relatively
calm condition. Since the water surface is not absolute-
ly quiet, the probability of the first model couldn’t be
as big as the probability shown in Fig. 5. So from mod-
el probabilities shown in Fig. 8, we can conclude that
the IMM algorithm can adapt to the maneuvering condi-
tion well, and can overcome the shortcoming that single
model can’t adapt to the chang of carrier maneuvering
process. The problem existing in Ref. [ 1] is solved
that performance of Kalman filter with AR(1) model is
becoming worse with the oscillating amplitude increas-

ng.
4 Conclusion

The IMM algorithm proposed above widely used in
the field of maneuvering target tracking system is intro-
duced to deal with gyro signal processing, and the
newly proposed filtering approach which combines IMM
algorithm and Kalman filter is explained in detail.
With the help of the Singer model, the gyro output
models under the static and maneuvering conditions are
constructed. In the static experiment, maximum error
and RMS error are employed as the criteria, and the
IMMKEF algorithm is proved to be effective on impro-
ving the gyro precision. In the dynamic experiment,
the power spectral density method is applied to demon-
strate that the IMMKF algorithm has a good filtering
performance at the whole frequency range, and the
curves of model probabilities has shown that the IM-
MKF algorithm can adapt to the maneuvering condition
well. All these analysis results indicate that the IM-
MKEF filtering approach for gyro outputs is feasible.
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