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Abstract
Mobile anchors are widely used for localization in WSNs. However, special properties over 3D

terrains limit the implementation of them. In this paper, a novel 3D localization algorithm is pro-

posed, called 3DT-PP, which utilizes path planning of mobile anchors over complex 3D terrains,

and simulations based upon the model of mountain surface network are conducted. The simulation

results show that the algorithm decreases the position error by about 91% , 8.7% and lowers calcu-

lation overhead by about 75% , 1.3% , than the typical state-of-the-art localization algorithm (i.e. ,
*MDS-MAP’ , ‘Landscape-3D’ ). Thus, our algorithm is more potential in practical WSNs which
are the characteristic of limited energy and 3D deployment.

Key words: concave/convex decomposition, path planning for mobile anchor nodes, 3D-local-

ization algorithm, wireless sensor network ( WSN)

0 Introduction

Wireless sensor network ( WSN) is a wireless

communication computer network constructed by a

large number of sensor nodes'".

the environment detection'**!

It is widely used in
military reconnais-
sance ™ | family control ™ | ete. Localization in WSNs
is one of the main topics for researchers in this area.
The existing localization strategies which mainly focus
on 2D environment have been well studied. Actually,
the more practical scenario is that the sensor nodes are
deployed in the random 3D environment, such as
mountain surface, underwater, space, etc. Therefore,
it is necessary for us to improve the existing work to
adapt to 3D terrains and to design a localization algo-
rithm that has higher precision, lower energy consump-
tion and smaller overhead.

With the development and application of the wire-
less sensor networks, the research on the sensor node
localization and other basic technology are becoming
more and more popular. To realize the complex 3D en-
vironment position, we do not only need to consider the
positioning accuracy, positioning efficiency and energy
consumption and so on, but also need comprehensive
terrain, environment and other factors. In this way,
some well studied 2D plane localization algorithms

could be applied to complex 3D environment skillfully
and make the applications of wireless sensor network
used widely.

An anchor is a special GPS-equipped node in
WSNs that can offer its absolute position, with high
production cost and low energy consumption. Howev-
er, anchor nodes are not suitable for large-scale de-
ployment. One more economic method is to use more
mobile anchor nodes, which can move to target area
according to a specific trajectory in the region of inter-
est (ROI), periodically broadcast their position and
assist other nodes to calculate their own position. By
this method, the cost of WSNs is reduced, the over-
whelming overhead of computation caused by too many
anchor nodes can be avoided as well. Therefore, how
to dig out an optimal path and to divide the mountain
surface network into sub-regions has become the key
problem and needs solving'®'.

Based on the observations above, we propose a
novel localization algorithm, named 3DT-PP, which
utilizes path planning of mobile anchors over complex
3D terrains. The contributions of our work are de-
scribed as follows ;

(1) A smart dividing strategy is proposed. In this
strategy , the complex 3D terrains can be easily split in-
to several relatively flat sub regions. As a result, the
mobile anchor can move freely and the nodes can be
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easily measured ;

(2) A local optimal solution of the ant colony al-
gorithm is presented. This solution can be achieved by
planning a reasonable path for the mobile anchors path
in a sub-region. Therefore, the signal of a mobile an-
chor could cover the entire ROl as much as possible
and reduce the repeat visit of the nodes;

(3) A reasonable scheme of path planning is de-
signed. In this scheme, it offers a best path among the
sub-regions that connects these sub-regions effectively.
Therefore, the mobile anchors in different sub-regions
can be connected more easily, and get the global opti-
mal solution to locate more nodes, resulting in reducing
the path length of the anchor nodes and the energy con-
sumption of the common nodes;

(4) Through 3DT-PP, the calculation cost and
energy consumption can be reduced significantly which
is 77% lower than that of MDS-MAP’ , and 7. 6%
lower than that of ‘ Landscape-3D’ , since the compli-
cated calculation is transferred from common nodes to

mobile anchors.
1 Related work

To acquire the positions of anchor nodes, they
usually need to be artificially deployed and installed
with a GPS device. As a result, the costs of anchor
nodes are higher than common ones. On the other
hand, the scalability of static anchor nodes is worse
than a mobile anchor node in terms of localization.
Therefore, using mobile nodes instead of static anchor
nodes for location is a feasible scheme.

The mobile anchor nodes periodically broadcast
their position information to unknown nodes; one of
which determines its own location based on this infor-
mation. This method is similar to the static network lo-
calization algorithms'”' | such as PHDV-Hop ( mobile
beacon DV-Hop ) 81 virtual rule’”, ADO ( arrival
and departure overlap)'"®’ | grid-based'"", etc. Dur-
ing the process of the anchor node movement, we can
determine some straight lines which cross an unknown
node, so the intersect point of the straight lines is the
estimated location of the unknown node''?’, such as
LSWD ( localization scheme for wireless sensor net-
works using directional antenna) '’ PI ( perpendicu-
lar intersection) "' | ete. If the mobile anchor node is
equipped with directional antenna or broadcasts packets

151 the localization results will be

with different powers
more accurate. In order to avoid the collinear problem
caused by using a single mobile anchor node, we pro-

posed a co-localization algorithm that uses multiple mo-

bile anchor nodes in Ref. [ 16].

Acquiring the optimal path of the mobile anchor
node is the basic requirement of high-performance lo-
calization. The optimal path should follow these re-
quirementsm’zo]; (D The mobile anchor node should
pass as more unknown nodes as possible; (2) Each un-
known node should obtain enough information of the
mobile anchor node; @) To reduce energy consump-
tion, the path should be as short as possible except the
random mobile path. Some researchers also have pro-
posed many algorithms, such as Scan''’, Double-
Scan'"'" | Hilbert'"”’ 7 !

2 2

the methods that use graph theory or optimal overlap
17,18]

Circles'™), S-Curves' and

9 2

category to acquire the optimal path' . The dynam-
ic path planning could be achieved by using the feed-
back information of unknown nodes and the directional
antenna'”'".

A novel flying landmark localization algorithm is
proposed in Ref. [22], in which each landmark is
equipped with a GPS receiver and broadcasts its loca-
tion information as it flies through the sensing space.
Then each unknown node in the sensing space esti-
mates its own location based on the basic geometry
principles and the received position information packets
from the flying landmark. Simulation results show that
when the transmission radius is 15m, the localization
error of the algorithm is 1. 6m, whereas the localization
error of the centroid algorithm is 2. 4m. But this meth-
od usually requires more hardware and the path is fixed
as well. The advantage of this method is not obvious
any more when the scalability of network increases.

MDS-MAP™ uses MDS ( multidimensional meas-
urement ) , which can be regarded as a set of data pro-
cessing technologies to show the geographical charac-
teristics by using distance measurement. A major ad-
vantage is that it can obtain relatively higher position
information, although it works based on the limited or
even wrong distance information. Next, the position in-
formation of each node can be obtained based on the
matrix transformation. But when the number of the
nodes increases, the calculation of the algorithm trends
to be complex and the requirement of memory space al-
so increases quickly. The time complexity that the ma-
trix is decomposed into orthogonal matrix and diagonal
matrix is up to o(n"3) , therefore the energy consump-
tion is considerably high.

Therefore, path planning is an important evalua-
tion criterion in localization by using mobile anchors in
the WSNs. However, the existing localization algo-
rithms mainly focus on improving the performance in
terms of accuracy. How to balance the optimal path
(representing the minimum overhead of computation)
and the accuracy of localization is an open problem in
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WSN research filed. Besides, at present, the proposed
algorithms about path planning are assumed to be suit-
able to plane (i.e., 2D space) where there are no ob-
stacles. In this case, these kinds of models are lack of
path planning in complicated scene. In this paper, we
propose a path planning scheme using mobile anchor
nodes to solve the problem of localization over 3D ter-
rains, in which we divide the complex 3D environment
into several relatively plain planes, resulting in a local
optimal solution of sub-regions. They are connected in-
to the global optimal solution.

2 Localization and path planning of mobile
anchors over complex 3D terrains

2.1 Network initialization

In order to complete the anchor node path plan-
ning, we first need to know the structure of the network
and relative information nodes, and then construct the
weighted undirected graph of the entire network, and
the weights of the graph are the distance between two
nodes.

2.2 The definition of special nodes and division of
sub-region

After the weighted undirected graph is obtained,
the whole network can be divided (the original uneven
terrain surface) into several flat sub-regions according
to the defined special nodes

(1) The definition of concave/convex node

To decompose the nodes deployed in a 3D sur-
face, the border nodes should be determined first.
Herein the border nodes are defined as the ones which
lie in a layer border. These border nodes are used to
establish sub-areas. A node is considered as the lowest
bound one if it is in the lowest of given sub-area. Simi-
larly, a node is considered as an upper bound one
when it lies in the upper of sub-areas. Let S,(p) de-
note the set of the nodes at the most k£ hops away to
node p. ES,(p) is defined as the k-hop neighborhood
of p , which contains that the nodes are exactly k£ hops
away from node p. Clearly, ES,(p) can be regarded as
a (or a part of) sphere centered at node p. Given any
two nodes p,, ¢, € ES,(p), we define a perimeter
from p, to ¢q,, denoted by Di(p,, ¢,), as the set of
nodes which are on the shortest path from p, to ¢, using
the nodes in ES,(p). Therefore we define the perime-
ter distance (i.e. the sum of hops), | Di(p,, ¢q,) |
from p, to ¢, , as the number of sensors in D} (p,, ¢,)
minus one, Define ¢ as the number of nodes of ES,(p)

set. To decrease the error of C,(p), we must get the

max value of | D (p,, ¢q,) | n t nodes.
The definitions are exemplified by the example
shown in Fig. 1, and the concavity/ convexity is defined

by;
C.(p) = : (?"271,2,..,,; | Di(py, q) 1 +1),
21k
(1)

where p > 0 is the scale factor for Euclidean distance
and hops of the sensor nodes.

Fig.1 The samples of concave node

If the surface on which nodes are deployed is
close to plane, and these nodes are uniformly distribu-
ted, then C,(p) = 1. Given a threshold 4, where >
0, a node is considered as concave/convex if C,(p) <
1 — 6. Note that threshold 6 can be obtained on the ba-
sis rule of thumb.

Under the assumption that & < 3, the sub-region
of 3D surface is prone to be smooth in the given area.
So the path shaped by the nodes in ES;(#) approxi-
mately forms a circle. As a result, it can be measured
by a perimeter.

As Fig. 1 shown, a node p, Letk =2,6 =1, p,
and ¢, be the starting node and the ending node, re-
spectively, and according to Eq. (1)

D§|p1,q1| = 9.
(D;|p1,ql|+1) (9 +1)

2 X2 12.56 =0.79 <1 -0.20°
where = 0.20, andp = 1 for simplicity.

Correspondingly ,

(2) Region segmentation

By the above method, we get the concave/convex
nodes and a rough outline structure of the concave/
convex nodes, and then obtain planes roughly. We
find the convex nodes and connect them and make spe-
cialization of the original link from the concave/convex
node. Therefore, the entire network can be divided in-
to a plurality of sub areas, and each sub area can is be
constructed an approximate plane structure.
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The region segmentation algorithm flowchart is
shown in Fig. 2.

Any isolated concave/convex

Record the position of a
random node
[
1] |
Connect with the neighbor Record the
position of
concave/convex node
next node

A

Form a loop?

Fig.2 Region segmentation algorithm flowchart

After segmentation of the sub-region, we check
the connectivity between the areas and abstract each
sub region as a node. If there are two or more lines on
the topological structure of the network, we connect the
sub-region in the sub-region graph. In order to accom-
plish the sub-network connection, it is necessary to
find out the Hamilton passage, and then seek a path
through all the nodes, and the passage passes through
each node only once. As a reuslt, the total shortest
distance (or the total minimum weight) of the entire
path can be obtained.

2.3 Path planning for mobile anchor nodes

Based on the work described above, the basic net-
work topology and connection properties can be got. In
this section, a new scheme will be presented which of-
fers an effective and complete path planning of mobile
anchor nodes using the network topology and connec-
tion properties. Our planning scheme can shorten the
moving path of the mobile anchor node, complete the
3D terrain surface sensor for precise localization and
reduce the calculation cost of the sensor nodes.

(1) Path selection

Based on the previous work discussed above, the
sub-region set can be obtained roughly. Assume that
each sub-region is plane and the path planning in each
of them can be constructed, respectively.

Given mobile anchor localization radius R ( the
semi diameters of the 4 nearest RSSI), V = {v,,v,,
--,v, € Sgt, S, is the sub-region to be localized, v, is
the vertex on S,. Inner vertices of v, are the nodes in
the circle centered at vertex v, with the radius of R.

When localization begins, vertex v,, is selected
first randomly, then inner vertex v, is chosen, and all
the inner vertexes in V subtract v,. The construction
process continues until there is no vertex in V. Thus we
can make sure that each node can get its information
and a useful path.

However, the path is not optimal since v, is select-
ed randomly. To obtain a better path, we utilize the
ANT algorithm'*' to complete this job. Table 1 shows
the terms and meanings of the proposed algorithm.

Table 1  Symbols and their meanings in ANT algorithm
Signals Meanings
N Nodes number
C Nodes Set
dij(i,j =1,2,---,N) Distance between i and j
D Distance set( ranged by RSST)
b(t)(i =1,2,---,N) Ant number at time ¢, node i

Ant number

M = iz bi(t>

h;(i =1,2,---,N)
c,(i =1,2,-,N)
(¢; >=1)
Tg(t),
(7;(0) = constA)

Hops for node i to current node
Adjacency list size of node i

Pheromone density at time t on

the edge of i and j

Accumulate pheromone density on

T . .
v the edge of i andj
Effect on path select of
a .
pheromone density
5 Exceptions on choosing edge ¢, j under
Ub inspiring f » s
inspiring factor’ s influences
B Effect on path select of path length
Exceptions on choosing the next vertex
@} as j on node i under inspiring factor’ s
influences of neighbor nodes number
Effect on path select of neighbor
Y nodes number
Exceptions on choosing the next vertex
zpi as j on node i under inspiring
factor’ s influences of hop number
) Effect on path select of hop number

where 9, (1) = 1/d;,¢,;(t) = 1/c; (the nodes which
have the smallest number of neighbor nodes should be
visited in the order of priority since there is a lower
probability for these nodes to become neighbors next
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1
h

7
visited first. When all the neighbors have been visited ,

(the nearest neighbor should be

time) , (1) =

unvisited nodes are looked for in a reverse direction).
Letpi;(t) be the probability for k(£ = 1,2,

M) ants which move from node i to node j at time ¢, the

one step transition probability p(¢) can be given by

75 x (1) x @ (1) x (1)

J e allowed,

p() ={ > 7mi(Oel(Hw(0)
J =allowedy,
0 others
(2)
where allowed, = { N —tabu, | represents the node that

ant k is allowed to move, tabu, denotes the forbidden
table of k(k = 1,2,---,M) ant. This table is used to
restore all the nodes that ants have passed.

Positive information feedback: in each iteration,
an ant must update the pheromone of the path when it
finishes its routine. The information can be regarded as
the reference of the following ants. Assume the time
duration is s, the pheromone is updated as

,(t+s) = (1 =p)7,;(1) + A7, (3)
AT, = ZAT/;]- (4)

where p means the volatilized action of pheromone, 1 - p
shows the remain pheromone factor accordingly, p €
[0,1], A7; means the pheromone increment of the it-
erate from nodeitoj. A7;(0) =0. And A’TZ means the
pheromone left by the £ ant on path (i, j) in the cur-
rent iteration. The ant-density model is used to calcu-
late A7
ATf}(t) =
{Q if the & th ant goes through (i, j) at time ¢ + 1
0 Otherwise
(5)
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Fig.3 Path planning based on the finally formed circle.
100m x 100m plane region

After a path that can localize all nodes is got the
beginning and the ending nodes are connected to form
a circle as Fig. 3 shown.

(2) Path planning within planes

The Hamilton path is used to plan after finishing
localization in each sun-region, and two sub-regions
are connected in the topology graph of the sensor net-
work while two shortest paths are used according to the
position in Hamilton graph. Then the cross vertex is
disconnected within the sub-area to form a larger loop
and cover more areas, then the above processes are
done continuously, until the path covers the whole
Hamilton graph, where the process is shown in Fig. 4.
The pseudo-code of the proposed algorithm is shown in
Algorithm 1

Algorithm 1 :Acquiring a lager path through Hamiltonian graph

input ; assume network node topology G, = (Vy,, E}) ,
Sub-Regional simplified topology G, = (V, Ey)

output; modified network node topology G, = (V,,, E} ),

While Eg # @ / * visit and connect each Sub - Region * /

HE =<V |,V > Euxsits
Sn Sn Sn+l
EIEWS/L] =< V""m ’ V"V15n+1 > E”’Snz =< VWzﬂ'u ’VW'ZS/H-] >3
G, -=<1Y, Vs >=-<V V >+ E,  +E

Sy 2 VS wispt 2 Y w24l wsg T Py 3
/ # connect two Sub-Regions * /
Eg -= ES,,

/ # delete the corresponding edge in
the Hamiltonian graph * /

End if

n ++; / % next Sub -Region * /
End while

2.4 Localization by mobile anchor nodes

With the above process, a feasible anchor node
moving path is got. After that all nodes on the planned
path are informed. The mobile anchor node will start to
search for all kinds of these nodes after above process.
The mobile anchor node should be equipped at least
four RSSI transmitters on different planes. The mobile
anchor node will track the sensor node along the path.
Within the process, mobile anchor nodes can use GPS
or other methods to find their position. When the mo-
bile anchor meets a node on the path, it calculates its
position and sends the results to the node and its inner
nodes. After that, the node does not conduct the cal-
Throughout the
process, the mobile anchor node tracks down a path to

culation related position. whole
the destination node continuously, and the target node
transmits signals at the same time. After localization,
the target node will turn off its signal transmitting im-
mediately, and the next node on the path will start to
transmit signals, which continues until the localization
finishes. The process is shown in Fig.5.
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Fig.4 Connection of two sub-regions. The bold line is the boundary. (a) is original network. (b) forms a larger circle to

connect two sub-regions and connect every sub-region to form a circle of the whole network.

BEGIN

Mobile anchor get into
the region

obile anchor received Mobile arichor tove

the signal from the unknown node K . toward the position of K
o
A

Mobile anchor locate K
and its neighbor nodes

The next unknown node

Have Located all nodes? transmit signal, define

No itselfas K

Fig.5 Localization by mobile anchor node

3 The experiment and simulation results

In order to validate the reliability and performance
of the mobile anchor node path planning algorithm,
which has been discussed in Section 2, in the proposed
experiments, the complex 3D terrain model of 3D-TTP
in Matlab 7. 0 is simulated. It is assmued that the
nodes of the terrains are deployed randomly and uni-
formly. The advantages of our algorithm are more obvi-
ous when the number of nodes increases. Therefore an
appropriate large number of nodes are selected for this
simulation. In the proposed experiment, all the param-
eters which need to be given values have been put for-
ward in the algorithm. The parameter value will not be
changed except some special instructions are needed.
We compare the performance of 3D-PPT with Land-
scape-3D"*’ and MDS-MAP'*/.

Simulation experiment will be made in this sec-
tion. The experiment consists of two parts. In part 1,
the reliability of the algorithm is validated and the shor-
test path length is calculated with different amount of
nodes to check whether the algorithm could reduce the
move length of the anchor node when the signal covers
the whole LOI. In part 2, the algorithm is compared
with other algorithms, and the advantages/disadvanta-
ges of the algorithm are analyzed comprehensively.
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3.1 The global optimal solution found by the path
planning algorithm with different number of
nodes

The parameters of the ant colony algorithm are .
path loss coefficient A = 2, pheromone volatile coeffi-
cient p = 7, pheromone weight o = 3, stimulating fac-
tor weight3 =4,y =2,0 =1, pheromone incremental
A7; = 0.02, and the ant number M = 1000.

Assume that the initialized number of nodes is NV,
and in this section we will simulate these systems with
50, 100, 200, 400, 800 nodes, respectively corre-
sponding to the total number of 500, 1000, 2000,
4000, 8000 sensor nodes. These nodes are randomly
deployed in three-dimensional space of 100m x 100m
x 100m, and the mobile anchor traverses all initialized
nodes by traversal path planning based on the 3DT-PP
algorithm as Table 2 shown.

Table 2 Best path length

Initialize nodes number

Best Path Length
(to be localized) est Path Length(m)

50 200m
100 512m
200 1000m
400 2000m
800 3900m

The experimental results show that the planned
path of the 3DT-PP algorithm can be achieved for dif-
ferent number of nodes to be traversed, which has more
advantages in a large complex concave/convex net-
work. As the number of nodes grows, path length does
not show any unusual increase, but rather a smooth
uniform growth. This proved that our algorithm has
good stability and reliability.

3.2 The comparison between different algorithms
To get the comprehensive performance of the pro-
posed algorithm, we compare the algorithm with MDS-
MAP(P,R) and Landscape-3D with ‘3DT-PP’ and
then obtain the accuracy of measurement and energy
consumption of different algorithms under the same out-
side environment.
to have

Distance measurements are assumed

[25]

Gaussian noise Stochastic noise is added to the

true distance as
d = d x (1 + randn(1) x rang _ error) (6)

where d is the true distance, d is the measured dis-
tance, rang _ error is a value between [0,1], and
randn(1) is a standard normal random variable.

(1) The influence of the anchor node density

The localization accuracy of 3DT-PP algorithm in-
creases as the anchor node density increases. When
the ratio of anchor nodes is above 15% , localization
accuracy is better than the other two algorithms and the
higher the anchor node density, the more obvious this
advantage shown in Fig. 6.

0.22

—}— MDS-MAP(P)
—+— Landscape-3D |4
—&— 3DT-PP

0.2

0.18
0.16
0.14 +
0.12 +
0.1
0.08

0.06 i%—i : :__M___ﬁ_i
. H

5 10 15 20 25 30
The density of anchor (%R)

Average location error (R)

0.04

Fig.6 The influence of the anchor node density

Fig. 6 shows the computation cost is linearly pro-
portional to the number of beacons used, which pro-
vides great flexibility to sensor nodes: when the energy
is low, the sensor nodes can intentionally drop some
beacons to save the power.

(2) The RSSI error influence of average localiza-
tion error

In this subsection, we compare the average error
rate of our algorithm (i.e., ‘3DT-PP’) with ‘Land-
scape-3D’ and ‘ MDS-MAP’. Simulations show that,
to obtain the same level performance, ‘3DT-PP’ algo-
rithm has a lower distance measurement error and aver-
age location error, and has a higher positioning accura-
cy, compared to ¢ Landscape-3D’ and ‘ MDS-MAP’
in terms of position precision, as shown in Fig.7. Al-
though the position precision of ‘3DT-PP’ and ‘ Land-
scape-3D’ and ‘ MDS-MAP’ decreases as the distance
measurement error increases, obviously, the average
position error of ‘3DT-PP’ is lower than that of
‘Landscape-3D’ and ‘ MDS-MAP’. Under the sce-
nario in which RSSI error rate is 30% , the average lo-
calization error of our algorithm (i.e., ‘3DT-PP’) is
27% lower than that of * MDS-MAP’ , and lower than
that of ‘ Landscape-3D’. When RSSI errors is still at
25% , the average localization error of ‘3DT-PP’ is
36% lower than that of and ‘ MDS-MAP’ | and 18%
lower than that of ‘ Landscape-3D’. When RSSI error
is still at 20% , the average localization error of ‘3DT-
PP’ is 55% lower than that of ‘ MDS-MAP’ , and
30% lower than that of ‘ Landscape-3D’. At the same
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time, the average position error has nothing to do with
the scale of the network, and the average positioning
error of 3DT-PP is less than the other alogirithms,
which can ensure that 3DT-PP achieves a high positio-

ning accuracy.

0.35 T T T
—— MDS-MAP(P)
—+— Landscape-3D
03r —&—3DT.PP |
= 025
5
5
o 02
2
5
< 0.15
O
&
g
< 0.1
0.05 ﬁ .
g
0 s L s 1
3 10 15 20 25 30

Ranging error (%R)
Fig.7 The influence of the RSSI error

(3) The comparison between average position er-
ror and CPU time consuming the different algorithms

In this subsection, the accuracy ( position error)
and computation overhead of our algorithm are (i.e. ,
‘3DT-PP’ ) compared with ‘ Landscape-3D’ and
*MDS-MAP’. For comparison, we report the CPU
time consumed ( per sensor node) by position algo-
rithms in our simulations. All simulations are conducted

on a DELL precision 670 workstation ( Intel Xeon 3.0
GHz CPU, DDR-2, 2 GB memory).

For the simulation of MDS-MAP, MDS-MAP (P,
R) is used, which is the distributed version of MDS-
MAP with a refinement procedure. The performance of
MDS-MAP algorithm depends on the network connec-
tivity. Generally, the higher the connectivity, the
higher the accuracy and computation cost. In simula-
tions, the connectivity could be changed by varying the
sensor’ s radio range ( Since sensor nodes are randomly
deployed, even with the same sensor radio range, the
connectivity could be slightly different in different tri-
als. ). In the experiments for MDS-MAP (P, R), 5%
nodes are assumed as anchor nodes (with known loca-
tions ) .

More details of the comparison are given in Table 3.
To eliminate the effect of occasionality, the average of
another 1000 trails ( sensors are randomly re-deployed
for each trail) is also reported in the table. 3DT-PP
yields much higher accuracy with less computation
overhead. Experiments show that ‘3DT-PP’ algorithm
is much lower in terms of position error and calculation
overhead compared to ‘ Landscape-3D’ and ‘ MDS-
MAP’ , When the parameters and the average of 1000
trails keep unchanged, the position error of our algo-
rithm (i.e., ‘3DT-PP’) is 91% lower than that of
‘MDS-MAP’ , and 8. 7% lower than that of ‘ Land-
scape-3D’. The CPU time per node of our algorithm
(i.e., ‘3DT-PP’) is 75% lower than that of ‘ MDS-
MAP’, and 1. 3% lower than that of ‘ Landscape-
3D’.

Table 3 Comparison of 3DT-PP with other existing algorithms in a flat terrain with irregular topology

Parameter Results
Sensor
Algorithms Radio Connectivity Range Position CPU time
Range Error error per node
MDS-MAP(P,R) 200 25.712 10% 106. 764 0. 544sec
One trail Landscape-3D N/A N/A 10% 11.216 0. 143sec
3DT-PP N/A N/A 10% 10.116 0. 140sec
MDS-MAP(P,R) 250 33.130 10% 58.097 1.249sec
Another trail Landscape-3D N/A N/A 10% 11.712 0. 141sec
3DT-PP N/A N/A 10% 10.128  0.139sec
Average of MDS-MAP(P,R) 200 26.016 10% 115.357 0. 568sec
another Landscape-3D N/A N/A 10% 11.092 0. 143sec
1000 trails 3DT-PP N/A N/A 10% 10.119 0. 141sec

Table 3 shows the comparison of 3DT-PP and oth-
er algorithm in a flat terrain with irregular topology
using integrated above experimental data; 3DT-PP
yields a much higher accuracy with less computation

overhead. We find that the localization error and CPU
cost of 3DT-PP algorithm are lower than MDS-MAP
(P, R) and Landscape-3D.
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4 Conclusions

In this paper, a robust sensor localization alog-
rithm is proposed, called 3DT-PP. Besides several ad-
vantages over the existing sensor positioning approa-
ches, such as high accuracy, high scalability and low
computation cost and communication cost. Besides,
3DT-PP also provides the optimal path for the mobile
anchor nodes, and these nodes in 3DT-PP can be
transferred according to the path and be positioned pre-
cisely on the entire mountain surface. The simulation
results show that 3DT-PP is an effective location-find-
ing approach for sensor networks deployed over com-
plex 3D terrains.

References

[ 1] Abdel Salam H S, Olariu S. A 3D-localization and terrain
modeling technique for wireless sensor networks. Proceed-
ings of the 2nd ACM international workshop on Founda-
tions of wireless ad hoc and sensor networking and compu-
ting, New York, USA, 2009. 3746

[ 2] Xu YB,Sun Y L, Ma L. A KNN-based two-step fuzzy
clustering weighted algorithm for WLAN indoor positio-
ning. High Technology Letters, 2011, 17 (3), 223-229

[ 3] LiuY, He Y, Li M, et al. Does wireless sensor network
scale? A measurement study on Green Orbs. [EEE Trans-
actions on Parallel and Distributed Systems, 2013, 24
(10) ; 1983-1993

[ 4] Paul A K, Sato T. Detour path angular information based
range-free localization in wireless sensor network. Journal
of Sensor and Actuator Networks, 2013, 2(1) ; 2546

[ 5] Tao T, Qing G, Li I. Node cooperation based location se-
cure verification algorithm in wireless sensor networks lo-
calization. High Technology Letters, 2012, 18 (4), 376-
381

[ 6] Zhao Y, Wu H, Jin M, et al. Localization in 3D surface
sensor networks: challenges and solutions. In: Proceed-
ings of the 31st Annual IEEE International Conference on
Computer Communications (IEEE INFOCOM 2012) , Or-
lando, USA, 2012. 55-63

[ 7] Tan H P, Diamant R, Seah W K G, et al. A survey of
techniques and challenges in underwater localization.
Ocean Engineering, 2011, 38(14) . 1663-1676

[ 8] Wang R J, Zhang B. PHDV-Hop: A more accurate DV-
Hop positioning algorithm in WSN. International Journal
of Digital Content Technology and its Applications, 2012,
6(13):89-97

[ 9] Ding Y, Wang C, Xiao L. Using mobile beacons to locate
sensors in obstructed environments. Journal of Parallel
and Distributed Computing, 2010, 70(6) :644-656

[10] Xiao B, Chen H, Zhou S. Distributed localization using a
moving beacon in wireless sensor networks. IEEE Trans-
actions on Parallel and Distributed Systems, 2008, 19
(5): 587-600

[11] Han G, Xu H, Duong T Q, et al. Localization algorithms
of wireless sensor networks: a survey. Telecommunication
Systems, 2013, 52(4) . 2419-2436

[12] LiuKZ, Zhang J F, Hu F P, et al. Move under the con-

dition of beacon of wireless sensor network node localiza-

tion method. Journal of Beijing University of Posts and Tel-
ecommunications, 2010, 33 (2): 16-19 +33

[13] Zhang B, Yu F. LSWD; localization scheme for wireless
sensor networks using directional antenna. IEEE Transac-
tions on Consumer Electronics, 2010, 56(4) . 22082216

[14] Guo Z, Guo Y, Hong F, et al. Perpendicular intersec-
tion: locating wireless sensors with mobile beacon . IEEE
Transactions on Vehicular Technology , 2010, 59 (7).
3501-3509

[15] Jiang H, Yu T, Tian C, et al. CONSEL; Connectivity-
based segmentation in large-scale 2D/3D sensor net-
works. In: Proceedings of the 31st Annual IEEE Interna-
tional Conference on Computer Communications ( IEEE
INFOCOM 2012) , Orlando, USA, 2012. 2086-2094

[16] Cui H, Wang Y. Four-mobile-beacon assisted localization
in three-dimensional wireless sensor networks. Computers
& Electrical Engineering, 2012, 38(3) : 652-661

[17] Ding Y, Wang C, Xiao L. Using mobile beacons to locate
sensors in obstructed environments. Journal of Parallel
and Distributed Computing, 2010, 70(6) :644-656

[18] Zhong Z, Luo DY, Liu S Q, et al. An adaptive localiza-
tion approach for wireless sensor networks based on
Gauss-Markov mobility model. Acta Automatica Sinica,
2010, 36(11) :1557-1568

[19] Koutsonikolas D, Das S M, Hu Y C. Path planning of
mobile landmarks for localization in wireless sensor net-
works . Computer Communications, 2007, 30(13) :2577-
2592

[20] Yeow W L, Tham C K, Wong W C. Energy efficient
multiple target tracking in wireless sensor networks. IEEE
Transactions on Vehicular Technology, 2007, 56 (2):
918-928

[21] Anastasi G, Conti M, Di Francesco M, et al. Energy
conservation in wireless sensor networks: A survey. Ad
Hoc Networks, 2009, 7(3) : 537-568

[22] Gandomi A H, Yang X S, Alavi A H. Cuckoo search al-
gorithm; a metaheuristic approach to solve structural opti-
mization problems. Engineering with Computers, 2013,
29(1): 17-35

[23] Zhang L, Zhou X, Cheng Q. Landscape-3D:a robust lo-
calization scheme for sensor networks over complex 3D
terrains. In: Proceedings of the 31st IEEE Conference
on, Tampa, USA, 2006. 239-246

[24] Shang Y, Ruml W. Improved MDS-based localization.
In: Proceedings of the 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies, Hong
Kong, China, 2004, 4. 2640-2651

[25] Shang Y, Ruml W, Zhang Y, et al. Localization from
mere connectivity. In: Proceedings of the 4th ACM Inter-
national Symposium on Mobile ad hoc Networking & Com-
puting, Annapolis, USA, 2003. 201-212

Wang Ruijin, born in 1980, He received his
M. S. degree from University of Electronic Science and
Technology of China ( UESTC) in 2009. He is pres-
ently staying at UESTC to study wireless sensor network
et al. for his doctoral degree in information security.
His main research interests include wireless ad-hoc /
sensor networks and pervasive computing. He has pub-
lished a number of research papers in recognized jour-
nals and conference.



