HIGH TECHNOLOGY LETTERS!Vol. 20 No.4|Dec. 2014 1pp. 355 ~362

doi:10.3772/j. issn. 1006-6748. 2014. 04. 003

A novel multi-sensor multiple model particle filter with
correlated noises for maneuvering target tracking”

Hu Zhentao (##E#%) *, Fu Chunling®™
( " Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, P. R. China)
(™ School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China)

Abstract
Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sen-
sor measurements, a novel multi-sensor multiple model particle filtering algorithm with correlated
noises is proposed. Combined with the kinetic evolution equation of target state, a multi-sensor mul-
tiple model particle filter is firstly constructed, which is also used as the basic framework of a new
algorithm. In the new algorithm, in order to weaken the adverse influence from random measurement
noises in the measuring process of particle weight, a weight optimization strategy is introduced to im-
prove the reliability and stability of particle weight. In addition, considering the correlated noise ex-
isting in the practical engineering, a decoupling method of correlated noise is given by the rearrange-
ment and transformation of the state transition equation and measurement equation. Since the weight
optimization strategy and noise decoupling method adopt respectively the center fusion structure and
the off-line way, it improves the adverse effect effectively on computational complexity for increasing
state dimension and sensor number. Finally, the theoretical analysis and experimental results show

the feasibility and efficiency of the proposed algorithm.
Key words: multi-sensor information fusion, weight optimization, correlated noises, maneuve-

ring target tracking

0 Introduction

Maneuvering target tracking could be formulated
as a multiple model nonlinear filtering problem. The
existing solutions include an interacting multiple model
(IMM) approach''’ with suboptimal filters such as ex-
tended Kalman filter ( EKF) or unscented Kalman fil-
ter (UKF) and so on'**’. However, the inherent mix-
ing operation in IMM yields a density mixture that is
non-Gaussian. IMM deals with this non-Gaussian prob-
lem by a single Gaussian approximation that introduces
errors. It is well known that particle filter (PF) is ide-
al for nonlinear and/or non-Gaussian problems'*",
which provides approximate solutions to finding filte-
ring, predictive, and smoothing densities of interest.
The approximation is based on discrete representation
of these densities by samples from the space of un-
knowns and weights associated to the samples. The
method is composed of three steps: (1) the generation

of particles ( samples from the space of unknowns),
(2) the computation of the particle weights, and (3)
re-sampling. In order to improve the filtering precision
of nonlinear system state estimated, some scholars at-
tempt to replace directly a suboptimal filter by PF in
IMM. And each model has a fixed number of particles.
However, PF has a major disadvantage in that provided
with the extremely computationally expensive, because
hundreds (even thousands) of particles are needed to
maintain certain accuracy in tracking applications,
which makes existing and improved PF impossible for
real-time applications'®’. Motivated by further reducing
the computational expense, a multiple model PF
(MMPF) is presented by introducing model informa-
tion in sampling process of particles, and then effec-
tively weakens the adverse effect on computational
complexity because of the increase of dimension or
', However, MMPF inevitably leads into the
decrease of particles number which are allotted in dif-

model "’ .

ferent system models'® . As we all know, the effective
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sampling of particles state and the reasonable measur-
ing of particles weight are considered as two important
aspects to obtain better estimation precision in PF'”"'"'.
The first is to optimize the sampling particle state by
the introduction of current measurement information,
and the proposal distribution optimization is common

"1 The second is to reduce the adverse influ-

solution
ence of random measurements noise in measuring
process of particles weight as much as possible. Con-
sidering the effective utilization of redundancy and
complementary information from multi-sensor measure-
ments, combined with the information fusion technolo-
gy, a kind of optimization strategy of particle weight is
developed. The objective is to improve the reliability
and stability of particle weight.

In addition, it is known that the implementation of
PF is subject to the basic assumption with independent
noise processes, namely, it is independent between
process noise and measurement noise every time. Al-
though this assumption is made very often, it is not ful-
filled in many practical applications. For example, the
coordinate conversion between the target motion model-
ing and the measurement modeling, or the space trans-
formation and registration of distributed measurement
information leads to a correlation problem of noise
measurement and process noise in target tracking sys-
tem inevitably. On this condition, PF and some impro-
ving algorithms degenerate in filtering precision. Ai-
ming at the decoupling of correlated noise, Jin and oth-
ers give an optimal state estimation method for data fu-
sion with correlated measurement noise, but its draw-
back is not applied to noise variance matrixes with

12 . .
2] Ge and others give a recursive

same eigenvalues
fusion algorithm with correlated noises and one-step
out-of-sequence measurements, and the algorithm well
solves the measurement correlated noise problem in
sensor network' ', However, it takes no account of
the influence of system nonlinear. Considering the cor-
relations between process noise and measurement noise
in the non-linear system, Chen and others design a
kind of new decouple method by the rearrange of the
state transition equation to a new one, remove the cor-
relation, and apply the decouple method to the frame-
work of PF and improve the better filtering preci-

"4 In order to deal with the adverse effect from

sion
correlated noise, we develop a kind of decoupling
method. The objective is to improve the filtering preci-
slon to some extend.

The rest of the paper is structured as follows. Sec-
tion 1 presents the realization principle of multiple
model particle filter ( MMPF) in multi-sensor measure-

ment, which is the basis of the proposed algorithm.

Section 2 gives a weight optimization strategy of particle
weight and a decoupling method between process noise
and measurement noise, in addition, it dynamically
applies them into the framework of MMPF and gives a
concrete flow of multi-sensor multiple model particle
filter with correlated noises (MMMPF-CN) for maneu-
vering target tracking. Section 3 shows the results and
some discussions of applying MMMPF-CN to a maneu-
vering tracking task. Finally, Section 4 concludes the

paper.

1 Multiple model particle filter in multi-
sensor measurement

The maneuvering target tracking can be described

as follows.
Ty Np(rklrk—l) (1)
x, =f,(00) tu, (2)

Zpw = h(x,) +v,, m=12-M (3)
where X, € R"™ denotes the unknown system state at
time k, z, , € R" denotes the measurement from m
homogeneous sensors which are nonlinear mapping of
current state. u, , and v, , denote the system noise and
the measurement noise sequences, respectively, of

. . . 2 2
which variance is o7, and o, . 1, denotes the un-
STk v, m

known discrete model state, which is subject to the dis-
crete-time, homogeneous and finite state one-order
Markov chain. D = {1,2,---,d} and 7w, = P.{r,,, =
bl r, = a} denotes the state space and the transition
probability , respectively, here a,b € D. Il = [,

7,7, ] denotes the transition probability matrix,

d
w, = [77-(11 97T(12’“"7Ta(l] and Z b:lﬂ-ab = 1' The state

estimation problem can be solved by calculating the
posterior probability density function p(x, | z,,,,,) of
x, on the basis of all the available data of measurement
sequence. Because the complete information of sequen-
tial estimation is inp(x, | z,,,,), some parameters,
which system state estimation needs to know, can be
obtained, such as mean and variance, etc. For the sto-
chastic sampling characteristics of PF, model informa-
tion can be introduced in particle sampling process to
realize the joint estimation of system state and model
adopted at current time. Then, the arithmetic mecha-
nism of the multiple model particle filter in the follow-
ing sections will be analyzed emphatically. The key
idea of MMPF is to approximate p(x, | z,,,,,,,) by par-

ticles with model information, and can be written as

p(x, | zl;k,lm) =~ z i:|5(xk - <x§w ri>)/N
(4)

where §( +) is Dirac’ s delta and function. (x}, r,)
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denotes sampling particles with model information at
time k, which are sampled directly from p(x, |
Zyp1.m) > herei = 1,2 -« /Nand N— o . Unfortunate-
ly, p(x, | z,,,.,,) is unknown generally and the above
process is often impossible to implement. The difficulty
can be circumvented by sampling particles { (x;, r,),
w, |, with associated importance weights from a
known and easy-to-sample proposal distribution ¢(x, |
2,4 ). The process is described as the importance sam-
pling. And the associated importance weights of parti-
cle is defined as
ch < p( <xi,r2> | zl;k,l;M)/q( <x2,r2> [ zl;k.l,sw)
(5)
In order to further depict the generation of { {x},
r i, q(x,,r) | 2,,) is factorized as follows
q((xi,rb | zl;k,l;M) = q(<x2,r2> | <x2-1 ’r;c—l>’zl;k,l;M>
q( <x271 »r271> | zl;k—l,l;M) (6)
It is known that {x} ,r;) is sampled by augmenting
each (x,_,,r,_,) sampled from ¢({x,_ ,r,_,) |
Zy-1.1.) with the new state sampled from ¢ ( (x},7,) |
(%,_1»7s-1) s Zyyam). Considering the multi-sensor
character of the measurement system, it is needed to
calculate the weight wi,m of every particle in line with
single sensor measurement. In order to obtain the re-
cursive equation of @), p({(x,,r,) | z,,,,) is ex-
pressed in terms of p(z, ,, | (xi,r)), p({xi,ri) |
<x2~71 ,rjffl )) and p( <x;‘,-71 ’r271> | zl;k—l,l;M)' And
p({xp,r) | Zigoa) < P(Zg, | (x}.,7))
p( <xlk ,r2> | <x271 7r2—1 ) )p( <x;‘;71 ,r271> [ zl;k—l,l;M)
(7)
Under assumptions that the characteristic of sys-
tem state translation is subject to the Markov process
and the measurement sequence meet the conditionally

independent. Meanwhile, according to Eq. (5),
Eq. (6) and Eq. (7), the particle weights w, ,, is giv-
en by

a’i,m = w;‘cfl,m_p(zlr,m | () )p(Cxari) | (X ur )

/q({x,,r) | <xﬁr—1’r;;—l>’zl;k,l;ill) (8)
In the practical application, the proposal distribution is
commonly selected as

q( <xL,rL> | <x;{-1 ,r2_1> 7z1;k,l;M) =

p( <x2’r2> l <x;c—l ,TZ> )P(TZ l rjc—l)

(9)

Substituting Eq. (9) into Eq. (8), the weights
update equation can then be shown to be

O = Ot P (2 | (X071 (10)

Next, w};‘m is normalized, and let w };‘,n denote the

normalized weights. Based on w | , and the number N

of sampling particle, the re-sampling is introduced to

improve the particle degenerate problem. The underly-

ing principle of re-sampling is to eliminate particles
with small weights and to duplicate particles with large
weights under the conditions of the total particles num-
ber invariant' ', A set of new particles { {x},r,) e
are sampled after re-sampling. According to the Monte
Carlo simulation technology, state estimation can be ul-
timately achieved by the arithmetic means of {(x},

i

2 Multi-sensor multiple model particle fil-
ter with correlated noise for maneuve-
ring target tracking

2.1 The weight optimization strategy

In view of the richly redundant and complementa-
ry information existing in the multi-sensor measurement
system, it provides the necessary condition objectively
to improve the influence of random measurement noise.
According to the realization principle of particle filter
and the characteristic of sensor accuracy, meanwhile,
combined with the construction of multi-senor likeli-
hood function and the weight fusion ideology, the parti-
cle weight optimization strategy is designed to improve
the variance of particle weight . And then it gives
the principle and process of particle weight optimization
strategy in detail. Firstly, suppose that measurement
noise is subject to the hypothesis of Gaussian distribu-
tion, and Eq. (10) is written as
wi&,m = wi—l,m exp( = (z;, = h( ((x} 5r;c> ) )2/20'%,")

/ /27770'%“
= Wi exp( = (v, = (h({x,r)) = h(x,)))’
Neo,; )/ 27e,, (11)

It is known that w} ,, is subject to the Gaussian
distribution with mean h( (x};,r,)) - h(x,) and vari-
ance 0'3“’. Secondly, it is needed to calculate which
denotes weight of particle i after fusion at time %, and
let A, ,, be defined as the weight coefficient at the fu-

sion process.
M

®, = 0, > A (exp(= (v, = (h({x},r,))
- h(x,)))* 20, )/ 27me,, ) (12)

In accordance with its characteristics of Gaussian
distribution, the following is given

" M . .

o~ NCS " AL, 1)) = h(x),
M

> Aao,) (13)

And the standard deviation of @, can be written as

M
P S N (14)

where the smaller o, is, the higher the accuracy of fu-

is set, o 1is

w,

sion output is. Obviously, when o,
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closely related to the distribution of A, . In order to

obtain the highest fusion accuracy, o, should be mini-

mized. According to the information conservation prin-
ciple, the calculation of g;; can be further attributed to

the solving problem of condltlonal extreme value. That

- and Z Akom 1 (A, =0) are

known, and how to find the conditions that the value of
M

A(/\k,] JApas a/\k,M) = Z mzl)‘i,mo'ihm meets the

minimum. Considering that the above is a typical con-

is when o, ;

straint condition equation of multivariable conditions
extremum problems, the solution can be refer to the
Lagrange multiplier method. So the modified function
I( Z it—lAk’”L —1) is introduced, and the function ex-
pression of A is given by

A=>" ae (S A -1

(15)

The partial derivative of A, , is calculated on both
sides of this function respectively. If and only if
IN/ A, ,, is equal to zero, and A can be taken as the
minimum. The expression of A, ,, is written as

Ak,m - 19/(20-”{ m) (16)

Since z !

=-2/(Z 1/0 (17)

Vk,m
Then Eq. (17) is substltuted into Eq. (16) , and
)\/c,m = 1/(03/{‘," z :: l/av, m) (18>
After A, is solved, the fusion precision o,; can be cal-

culated by Eq. (19).

oy =1/ /Z,Hl/‘fvm (19)

According to Eq. (19), when the measurement
accuracies of sensors are the same and their values are

Ak is equal to 1, and

all o, , we obtain

Vi ’
o = o,/ /M (20)
The above equation also shows that the precision
of particle weight can be improved /M times than sin-
gle sensor, while M sensors with same measurement ac-
curacy are used. When the measurement accuracy of
each sensor is different, the highest and worst accura-
. 2 2 .
cies are g} ., and o7}, , respectively, and then

<V + /X" we) 2D

Based on Eq. (21), the measurement accuracy of
sensor will also help to improve the variance of particle
weight no matter how bad it is.

2.2 The decoupling method of correlated noise
If there are dependences between process noise
and measurement noise in the system described by

Eq. (1) and Eq. (3),
and the measurement noise are subject to

Elu,, (v,,)"] =8, . (22)

denotes the covariance between process

that is to say, the process noise

where S

e Vi m
noise and measurement noise. Obviously, it destroys
the basic assumptions that the process noise and the
measurement noise are independent in PF and im-
proved PF, and then the performance of MMMPF will
inevitably degrade to some extent. Aiming at the above
problem, the decoupling method of correlated noise is
given by learning from Ref. [14]. Its concrete proce-
dures are as follows. Firstly, Eq. (3) is rewritten as

Zictm — h(x,.,) - Viciom = 0 (23)

And then the following equation can be obtained
f;,‘<xll 1) - Z M- 1mh<xA »)
+ Zm (-1, mZ -1 m TU

_Z nklmklm (24)

where %, is an addltlonal parameter and it is with a
proper dimensionality. In addition, the new state tran-
sition function f; (x,.,) and new process noise se-

quence u, , . are defined as
TE-1

; M
frk (%) = frk(xkq ) - Z mzlnk—l,mh(xkfl )
(25)
. M
uk—l,rk,] = uk—l,rk,l - Z m:]nk—l,mvk—l,m (26)
M
O, = Z et M=t w1 m (27)

Here @,_, is considered as the control item in the
new system. The state transition equation can be sim-
plified as

X, = f:‘ () +0O,_, + uk*—l,r/[_l (28)

And the covariance of process noise and measure-
ment noise in the new system can be obtained

E[uk*,rk(vk,m>TJ = Suk‘,l‘,vkvm N mO, , (29)
when 5, is selected as the following value.

nk,m = S"k,r;.n"/f,m (0-3,”" ) - (3O>

And the covariance is equal to zero in Eq. (30),
that is to say, the process noise in Eq. (28) and the
measurement noise in Eq. (3) are independent:M:. In
addition, the mean P,

. 2 .
and the variance o7, of u;
Ry, Tk

can be calculated by the following two equations.
ILLu]L*.,k = E[uk,rk:l 1’/( mE[ Z -1 k m = O
(31)
2 _ 2 M 2 -1 T
o-uk*.rk - o-uk.rk - Z m=1Su/:,rk*Vk,m(0-v/c,lu) <Suk,r;.nvk,m)
(32)
According to Eq. (32), when process noise and

measurement noise sequences are subject to independ-
ently identical distribution in original system, namely,
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is equal to zero and

. =0, (33)

LI U ry,

U s Vi, m

From the result, the new system modeled by
Eq. (28) and Eq. (3) is equivalent to the original sys-
tem, but also it is provided with the characteristic of
uncorrelated noise, so it is of more universal.

2.3 The flow of MMMPF-CN

According to the above analysis, the realization of
MMMPF-CN is similar to MMMPF in the algorithm
framework , and the differences are the following two
points. On one hand, particle weight is calculated by
Eq. (16), the measured process of which synthesizes
the redundancy and complementary information from
the multi-sensor measurements. On the other hand, the
estimation object of MMMPF is for the new nonlinear
system decoupled by Eq. (28) and Eq. (3), not for
original nonlinear system modeled by Eq.(2) and
Eq. (3). The concrete steps are as follows.

® At time stepk — 1
Suppose we have { (X,_,,ri_,) @ |-, and X,_,,;_,
® At time step k
With new measurements, z, ,, m = 1,2, M

Firstly, the model states of every particle are sampled by r
~ p(ri1 7)) at time k. The concrete steps are as follows.
Supposing that the model state ri,_, = a of particle i is known
attime k — 1, and g is a uniformly distribution number in the

¢

-1
range (0,1]. When & meets E : Ty < &S E T
b=

o1 Tabs
the model state of particle i is selected as r;, = c at time k.
Secondly, according to Eq. (30) and Eq. (32), %, ,, and
o £y, A€ calculated.
Thirdly, combined with Eq. (28), {xi, r.) is sampled by

the following equation.
o . M .
) = £ () = S ()

+ Z ::lnkfl,mzkfl,m + u;ﬁ,,l (34)

Fourthly, the weight | of particle i is calculated by Eq.
(12)

Fifthly, the re-sampling is introduced and a set of new par-
ticles set {{x},r}) }/\:] is sampled after the re-sampling
stage.

Finally, the estimation X, is obtained by the method of a-

rithmetic mean.

N N . .
X = > (X, /N (35)

3 Simulation result and analysis

To exemplify the applicability of MMMPF-CN, the

maneuvering target tracking system of multi-sensor

measurements with three two-coordinate radars are con-
sidered as the simulation scene. In this example, the
PC, 3.40GHz Intel i7-2600 CPU has 3.3GBs of RAM
is used as the simulation hardware environment, and
the target moves within the horizontal-vertical plane.
Foxx,_, +Tu_, 1<k<38
X, ={F,xx,_ +Iu_, 8<k<l6
F,xx,_, +Tu_, 16 <k<25

L, = [n 61 +v,, m=1.2,M
re = sqrt(ag +y7)
6, = sqrt(x; +y;)
Where x, = [x,, %,, ¥,, ¥,)  denotes system state

vector. x,, %, , ¥, and y, denote position component and
velocity component of target state on the horizontal di-
rection and the vertical direction, respectively. The
values of initial position and initial velocity are as fol-
lows, [x,, y,] =[5km, 8km] and [«x,, y,] =

1 = 0 O
[0.5km/s, 0. 1km/s]. F, = |0 10 Olugp,
0 01 7
0 0 0 1
1 sin(é7) /€ 0 - (1 -cos(ér))/é&
_10 cos(é1) 0 - sin(é7)
0 (1 —cos(ér))/é 1 sin(ér) /€
0 sin(é1) 0 cos(&T)

denote the system state transition matrixes, where F,
and F, denote the uniform linear motion and the uni-
form turning motion respectively. The sampling time 7
and turning angular velocity £ are 1 and 0. 15rad/s, re-
0 0 72
72 17 0

tem noise matrix. u,, and u, , denote the system noise

T
spectively. I' = [ (7)-] denotes the sys-

vector, and suppose they are subject to zero-mean
Gaussian white noise with standard deviation ‘Tik,l =
0.2I and o'iu = 0. 251. Idenotes the identity matrix.
r, and @, denote the radial distance component and the
azimuth angle component in measurement vector, re-
spectively. v, denotes the measurement noise vector
and suppose they are all subject to zero-mean Gaussian
with  standard

white  noise deviation

process
Rr m : 1at1
[ 0 R ] , here the noise standard deviations of ra-

0,m
dial distance component and azimuth angle component
of three sensors are R, | =0.12km, R,, =0. 05w/
180rad, R,, =0.1km, rad R, ; =0. 15km, and R, ; =
0. 027/180rad, respectively. The correlation coeffi-
cient of system noise and measurement noise is 0. 21.
In this case, the numbers of Monte Carlo run are 50
and the total simulation steps are 25.

Three algorithms including MMPF, MMMPF and
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MMMPF-CN are compared. Among them, MMPF de-
notes the traditional multiple model particle filter and
the application objects are mainly for the single meas-
urement condition. In the example, the second sensor
measurements are used into the simulation realization
in simulation. Relative to MMPF, the improvement of
MMMPF is that the weight optimization strategy pro-
posed is introduced into the framework of MMPF and
the application objects of MMMPF are also expanded
into the actual multi-sensor measurements. Further im-
provement is that we consider the problem of correlated
noises in the actual engineering, the decoupling method
is incorporated into the construction of MMMPF-CN.
According to the realization principle of algorithms,
three sensor measurements are used in the simulation of
MMMPF and MMMPF-CN at the same time.

The motion trajectory of an estimated object is giv-
en in Fig. 1, and the comparisons of particle weight va-
riance before and after the re-sampling are given in
Fig.2 and Fig.3, respectively. The results clearly
show that the stability and reliability of particle weight
variance in MMMPF and MMMPF-CN are superior to
MMPF, the reason is that the adverse effects caused by
random measurements noise for particle weight is im-
proved by the rational utilization of multi-sensor meas-
urements information. And we also observe that the de-
coupling of correlated process and measurement noises
also promote the stability and reliability of particle
weight to some extend. Fig.4 and Fig. 5 show the com-
parison of RMSE of state estimation for three algorithms
in horizontal and vertical direction over 50 independent
runs. The data in Table 1 quantitatively show the mean
of RMSE of state estimation. It is shown clearly that
the filtering precision of MMMPF-CN is superior to oth-
er two algorithms. Moreover, the following conclusions
can be drawn by the data analysis in Table 1. MMMPF
has the better filtering precision relative to MMPF, but
its real-time is inferior to MMPF. The reason is that we
need to calculate M particle weight w ,, according to
Eq. (11) in order to obtain @, and the more the num-
ber of sensors used in the measurement system, the
more computational complexity will be. But we should
also find that the increase of computational complexity
appear on the measure process of particle weight be-
cause of the utilization of center fusion structure , which
does not reflects on the re-sampling step. So the in-
crease will not cause rapid expansion of calculation
amount. In addition, compared with MMMPF,
MMMPF-CN has a little increase in the computational
complexity. The main reason is that the decoupling
process of correlated process and measurement noises is

an off-line way.

RMSE of position

" j "] — Target trajectory
16 1
é 14} i
N
8
R '
%
-9
10} 1
8 Il L 1
4 6 8 10 12 14
Position in X axis
Fig.1 Motion trajectory of estimated object
- MMPF
0.16 | -~ MMMPF
— MMMPF-CN
0.12+

0.04 -

V
0 5 10 15 20 25
Simple step

Fig.2 Before the re-sampling

0.02 o= MIMPF
-~ MMMPF
— MMMPF-CN
0.015 1
0.011
0.005
0 1 L 1 1
0 5 10 15 20 25
Sampling step
Fig.3 After the re-sampling
0.12 : : —— T E
-~ MMMPF
— MMMPF-CN
0.1r y
0% 5 10 15 20 25

Sampling step

Fig.4 Horizontal direction
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0.12 —6- MMPF
-~ MMMPF
01 —— MMMPF-CN|

RMSE of position (km)

0025 5 10 15 20 25
Sampling step
Fig.5 Vertical direction
Table 1  The comparison for the mean of RMSE and
the average time over 50 independent runs
Algorithm MMPF MMMPF MMMPF-CN

Horizontal direction (km) 0.0638  0.0439 0.0386
Vertical direction (km)  0.0639  0.0442 0.0390
Cost time (s) 0.4051 0.4527 0.4553

4 Conclusions

The objective of this paper is to deal with the ap-
plication of particle filter in maneuvering target tracking
with the multi-sensor measurement system. Considering
some actual problems occurring in maneuvering target
tracking such as the effective utilization of multi-sensor
measurement and correlated characteristic existing be-
tween process noise and measurement noise, mean-
while, in view of the requirement of computational
complexity and real time, MMPF is used as the basic
framework of the new algorithm. And then, we sepa-
rately design the optimization strategy of particle weight
and the decouple method of correlated noise which are
dynamically combined with MMPF. The theoretical
analysis and experimental results show the new algo-
rithm has the following advantages.

1) MMPF is considered as a new solution to man-
age the switching problem of the multi-sensor model in
accordance with the particle sampling mechanism.
Compared with the direct combination of IMM and PF,
MMPF solving the fast-growing problem of particle
number is with the increase of the system model.

2) Aiming at the decline of filtering precision
caused by the instability of particle number allotted to
different models, according to the perspective to en-
hance reliability particle weight, a novel optimization
strategy of particle weight is designed by the centralized
weighted fusion mode. Besides, the optimization strate-
gy of particle weight also gives a way of extracting and
synthesizing multi-sensor information in the structure of
sampling nonlinear filters, which has contributed to the

application of PF in multi-sensor measurement system.
In addition, the optimizing process of particle weight is
only related to the measurement accuracy of sensor
used at current time, not related to the number and
sampling rate of sensors, so the optimization way also
avoids the adverse influence from the lack and out-of-
sequence of measurements.

3) Considering many actual projects with correla-
ted measurement and process noise, we design a kind
of off-line decoupling method correlated noise in order
to further improve the filtering precision, meanwhile,
the off-line form effectively avoids the increase of com-
puting complexity.

4) The proposed method has two shortcomings,
one is that MMMPF-CN can only treat the case of
which processes noise and measurement noise must be
subject to Gaussian distribution at the time. In addi-
tion, the other is that the application object of
MMMPF-CN is limited to the measurement information
from homogeneous sensors. So they also limit the appli-
cation field of algorithm to some extent,the heterogene-
ous sensor system estimation with non-Gaussian corre-
lated noise will be studied further in the future.
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