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Abstract

The wide acceptance and data deluge in medical imaging processing require faster and more ef-
ficient systems to be built. Due to the advances in heterogeneous architectures recently, there has
been a resurgence in the first research aimed at FPGA-based as well as GPGPU-based accelerator
design. This paper quantitatively analyzes the workload, computational intensity and memory per-
formance of a single-particle 3D reconstruction application, called EMAN, and parallelizes it on CU-
DA GPGPU architectures and decouples the memory operations from the computing flow and orches-
trates the thread-data mapping to reduce the overhead of off-chip memory operations. Then it ex-
ploits the trend towards FPGA-based accelerator design, which is achieved by offloading computing-
intensive kernels to dedicated hardware modules. Furthermore, a customized memory subsystem is
also designed to facilitate the decoupling and optimization of computing dominated data access pat-
terns. This paper evaluates the proposed accelerator design strategies by comparing it with a parallel-
ized program on a 4-cores CPU. The CUDA version on a GTX480 shows a speedup of about 6 times.
The performance of the stream architecture implemented on a Xilinx Virtex LX330 FPGA is justified
by the reported speedup of 2. 54 times. Meanwhile, measured in terms of power efficiency, the FP-

GA-based accelerator outperforms a 4-cores CPU and a GTX480 by 7.3 times and 3.4 times, re-

spectively.

Key words: Stream architecture, general purpose graphic processing unit ( GPGPU), field
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0 Introduction

In high performance computing (HPC) communi-
ty, the wider applied general purpose graphic process-
ing units ( GPGPUs) and the lesser extent field pro-
grammable gate arrays ( FPGAs) are two of the most
important candidates for extending and accelerating the
computing power of standard computer architectures.
GPGPUs are of interest for several reasons: inexpensive
(cost effective ) , providing high memory bandwidth
and parallelism in large-scale. The performance advan-
tage of GPGPUs has been demonstrated in plenty of
[1]

scientific applications In contrast, by introducing

specialized accelerators, configurable datapath and
memory subsystem, FPGAs allow developers to custom-
ize the hardware architecture with respect to their ap-
plications’ characteristics, and therein lies the power

efficiency of using application-specific hardware. Lim-

ited by the device capacity and the high implementa-
tion cost, the traditional usage of FPGAs is largely re-
stricted to either small-scale applications, such as RSA
and FIR, or key kernels of applications, such as the

(2]

molecular dynamics ™. Recently, due to the advances

in the FPGA technologies and the emergence of fast

B31 0 there

floating-point elementary function libraries
has been a research trend in the design of customized
accelerators that leverages the reconfigurability of FP-
GAs.

In this paper, recent work on accelerating a large-

called

EMAN"/ | which is an open source software package

scale scientific application is introduced,
for single-particle 3D reconstruction from Cryo-electron
microscopy images, on a customized FPGA accelerator
card as well as up-to-date GPGPUs. The EMAN is
composed of hundreds of time-consuming kernels show-
ing diverse computing features. How to integrate kernel

implementations under a unified framework determines
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the extent to which the application can be accelerated
on FPGAs. Moreover, the overall execution time of ap-
plications is often dominated by the efficiency of their

1. One of the main complexities

data access patterns
for designing customized memory subsystem is that it is
needed to support various computing dominated data
access patterns and the data sharing across computing
kernels. However, the integration of multiple kernels
with various functions under a unified framework and
providing an efficient data exchange mechanism among
them are both proven to be challenges. To address
these concerns, we introduce a hybrid memory control-
ler, which is characterized by the support of explicit
and pattern-based memory access functionalities. The
memory subsystem can be viewed as both a framework
for creating data access patterns and a runtime system
that assists the construction of the data flows. The con-
tribution of our work can be summarized as follows:

® The parallelization strategies are evaluated to
accelerate a single-particle 3D reconstruction on up-to-
date GPGPU architectures. The applied percolation
technique greatly improves performance of accessing
off-chip memory. The CUDA EMAN on a GTX480
shows a 6 times speedup over a 4-cores Intel Xeon
E5520 CPU.

® A coarse-grained stream architecture on FPGAs
is proposed for accelerating the 3D reconstruction. The
stream architecture is designed based on key observa-
tions of kernel classification. Several optimizations that
facilitate the mapping between the application and the
stream architecture on FPGAs are proposed. In parti-
cular, we develop a novel hybrid memory controller
featuring the support of explicit and pattern-based data
access dominated by computing modules.

® The proposed stream architecture is implemen-
ted and evaluated on our customized FPGA accelerator
card. The efficiency is justified by the reported 2. 54
times speedup over a 4-cores CPU. Compared to the
GPU-CUDA based implementation, the customized ac-
celerator improves power efficiency by 3.4 times.

The rest of this paper is organized as follows. The
background of single-particle 3D reconstruction and its
characterization are introduced in Section 1. Section 2
and Section 3 explain the parallelization and optimiza-
tion strategies on GPGPU and FPGA architectures re-
spectively. The experimental results are discussed in
Section 4, whereas we conclude the work in Section 5.

1 Single-particle 3D reconstruction

The EMAN is a software package designed to han-
dle nearly all aspects of the single-particle 3D recon-

struction, such as particle selection, particle alignment
and 3D model projection/reconstruction, etc. The sin-
gle-precision floating-point format is used to store input
data and intermediate result. In single-particle 3D re-
construction for Cryo-EM images, the algorithm first
generates a preliminary 3D model based on the amount
of particles (images) , which are selected from scanned
raw micrographs or CCD ( charge-coupled detector )
frames. A refinement procedure for the final 3D image
is a model-based iteration. The preliminary model is
used as the starting point for the refinement loop. True
convergence is achieved when the model remains un-
changed for several successive iterations. The refine-
ment loop begins by generating a set of M projections
with uniformly distributed orientations. Then the N par-
ticles are classified into different classes by the projec-
tions ( particle classification) and aligned to generate
an average model for each class (class averaging). Fi-
nally, the average models with assigned Euler angle-
sare used to construct a new 3D model for the next
round of refinement.

Algorithm 1 illustrates pseudo-code of the refine-
ment algorithm. Generally, the particle classification
does an excellent job of assigning particles to the cor-
rect class. However, in some cases low signal-to-noise
ratio in electron micrographs will lead to miss-assign-
ment for some particles. Fortunately the incorrectly as-
signed particles will be eliminated by class averaging
procedure. The iteration of refinement is a sequential
process because current refinement depends on the
model generated in the previous iteration. However,
abundant of parallelism is observed within most single
refinement procedure. Since the operations of classifi-
cation and average are similar, the same parallelization

Algorithm 1: Reconstruction Alogrithm

1 while model T not converged do

2 generating M projections of 7,

// particle classification

3 foreach i €N particles in images do

4 for j€ M projections do

\; // rotationally and translationally aligns

// each particles to projected reference
PTFAlign (i, j);

// class averaging
6 foreach particles i in class j do
7 L RTFAlign (i, averagej);
// generate an initial class average
8 Initial Ave ();
9 foreach particles i do
10 L RTFAlign (i, average, .. );
// remove particles with less similarity
1 Remove ();
12 | Build3D(); // build 3D model
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can be applied. For simplicity of presentation, only the
analysis of classification (line 3-5) is presented. Note
that a common procedure of particle classification is ro-
tational and translational alignment (the RTAlign ker-
nel in Algorithm 1), which occupies over 95% of total
execution time. Therefore, this paper focuses the dis-
cussion on FPGA acceleration of the particle alignment
only.

1.1 Workload characterization

More than 90% execution time of the reconstruc-
tion program is consumed by the rotational and transla-
tional algorithm ( RTFAlign). In this section a detailed
characterization of this procedure is presented, focu-
sing on computation, memory behavior and parallel-
ism. The workload characterization motives our parallel
implementation on a many-core processor ( GTX480).
In the experiments, 2 images in real applications with
typical pixels are used; 256 x256, 512 x512. Table 1
summarizes the profiling experiments for execution
time, arithmetic intensity, branch ratio, working set
and cache performance. We present the experimental
results for one run of multiple RTFAlign executions in a
refine iteration.
1.1.1

Current multi/many-core technology integrates a

Arithmetic intensity

large number of arithmetic units into one chip. The
number of arithmetic operations of an application
should be obviously a critical measure of performance
on such a multi-core architecture. Arithmetic intensity
is used to show the ratio between arithmetic operations
and the number of input and output words required to
be computed in a kernel to evaluate how well it is
adapted to the many-core architecture. The third col-
umn in Table 1 is the arithmetic intensity of each ker-
nel in the RTFAlign algorithm. All but two kernels
(dot, Translate) have more than one of arithmetic in-
tensity. The vector dot multiplication’ s arithmetic in-
tensity is less than 1 because it needs 2 arithmetic op-
erations (one multiplication and one add) and 3 mem-
ory operations ( two loads and one store). The transla-
tion only involves with memory movement. The feature
of high arithmetic intensity seems to be well suited to
the many-core architecture like GPU. However, note
that computations with branch instruction may not uti-
lize many arithmetic units hindered by the serialization
of SIMD pipeline in GPU multithread execution. The
fourth column in Table 1 is the ratio of branch instruc-
tion execution in each kernel. Although several kernels
have more than 10% branch instruction execution, an
analysis of source codes indicates that most of the
branch executions are out of loops, which means the

branch instruction does not result in stall of SIMD on
GPU. Besides, through orchestrating data-task map-
ping, most of branch instructions within a loop could
be grouped together into one warp of CUDA. Observa-
tionl ; the RTFAlign algorithm is high arithmetic inten-

sive.

Table 1 Workload characterization for RTFAlign. Al Arithme-
tic Intensity. The profiling is collected from a single
run of RTFAlign. The time is measured as millisec-
ond.

kernel size  time Al  branch memory LLC

MCF 256 20.97 8.5 2.4% 1612KB 1.3%

512 106.3 1.4% 6347KB 1.2%

CCFX 256 1.74 4.3 1.5% 714KB 1.2%

512 7.16 1.2% 2858KB 1.2%
CCF 256 5.12 6.3 1.2% 524KB 1.5%
512 20.65 1.8% 2097KB 1.3%
Unwrap 256 3.75 10.5 8.9% 476KB 0.1%
512 15.79 17.2% 1905KB 0.1%
Rotate 256 3.71 23.5 5.2% 524KB 0.9%
512 14.18 12.7% 2097KB 2.4%
Translate 256 1.59 0 7.3%  524KB  30%
512 6.36 15.2% 2097KB  46%
Dot 256 0.28 0.67 1.8% 524KB 2.5%
512 1.32 3.8% 2097KB 2.7%

1.1.2  Memory

Another feature of the many-core architecture like
GPU is configured with small shared on-chip memory.
Detailed memory behavior is examined in several ways.
First, The working set is measured. As shown in the
6th column in Table 1 the memory usage of all kernels
is proportional to square of pixel. Limited by current
cryo-EM technology, the pixel of most of images is less
than 1024 x 1024. Thus, optimization for small shared
on-chip memory could take the advantage of the feature
of small working set. Second, to quantify locality we
sample cache access performance. The last column in
Table 1 reports the L1 data cache miss rates on an
AMD Barcelona processor. Most of kernels has good
spatial locality, which is favorable to share data among
threads. Note that Translate kernel has high cache miss
rate when the pixel size is larger. The translational al-
gorithm needs to translate a 2-D array from the left-bot-
tom to right-top and the memory access strides are pro-
portional to the size of one dimension. Therefore, the
access pattern incurs a large number of conflict miss.
Observation 2; The instantaneous working set of the
RTFAlign algorithm is small and has good spatial local-

1ty.
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1.1.3 Parallelism

Looking at the reconstruction algorithm in Algo-
rithm 1 we could exploit parallelism at two levels. A
coarse-grained parallelism is exploited by partitioning N
particles into multiple threads, and then each thread
performs rotational and translational alignment for its
own particles, which obviously leads to a higher instan-
taneous working set because the threads are performing
RTF Alignin parallel. Thus, contentions of shared on-
chip memory and bandwidth become bottlenecks for
scalability of the coarse-grained parallel algorithm.
Therefore, an alternative way is to exploit a fine-
grained parallelism within the rotational and transla-
tional algorithm. Observation 3 ; There is abundant par-
allelism in the RTFAlign algorithm. A fine-grained
parallelism is preferred.

This workload characterization shows that the sin-
gle-particle 3D reconstruction algorithm is of high par-
allelism, high arithmetic intensity and high spatial lo-
cality. At the first glance, these features are suitable
for highly parallel many-core architecture, however, it
is not trivially data parallel. For example, strategies to
develop a proper data structure for memory manage-
ment, coalesced memory access and orchestrate data
movement with thread mapping need to be carefully de-

signed for high performance.
2 Exploiting parallelism on GPGPUS

All data reside in off-chip global memory with the
highest latency (up to 1000 cycles) at the beginning of
execution. Although bandwidth to the off-chip memory
is very high at more than 100GB/s, it can saturate if
all threads request access are contiguous elements of
memory, which enables hardware to coalesce memory
accesses to the same DRAM page (i.e. contiguous 16-
word lines). Therefore, it is needed to apply optimiza-
tions that coalesce data accesses and reuse datain order
to achieve good performance'®’. Considering the mem-
ory hierarchy of CUDA model, we generalize its memo-
ry to two levels of memory: off-chip global memory
with high latency and on-chip shared memory with low
latency. Inspired by previous work on other multi-
threaded many-core architecture'”’ | percolation pro-
gramming model is extended to enable memory coalesce
optimized and hide the off-chip memory latency. Note
that a notable feature of GPU-CUDA is massive multi-
threading to hide latency on a memory hierarchy with
high bandwidth. On the architectural side the latency-
If the

threads are partitioned into memory threads and compu-

hidden is implemented at instruction level.

tation ones, a more flexible interface is exposed to pro-

grammer for scheduling memory and computation oper-
ations. A basic idea of percolation programming is to
decouple computation with memory access. The perco-
lation strategy for memory coalesce optimization con-
sists of three concurrent pipelining processes :

® Inward percolation: This step reads data from
off-chip global memory to on-chip shared memory. The
key insight is to orchestrate mapping between data and
threads to avoid un-coalesced access.

e Computation; After the required data reside in
the shared memory, parallel threads perform real cal-
culation with loaded data.

® Qutward percolation: Finally we write back the
results to global memory. Again a thread mapping
strategy needs to be selected to improve coalesced ac-
cess.

There are two remarkable advantages of percola-
tion strategy. First, since the off-chip memory access
operations are decoupled with computation, different
optimization strategies are developed to the three pipe-
lined stages, respectively. For example, the thread-da-
ta mapping may be adaptive through different stages.
Second, inward percolation-computation-outward per-
colation is actually pipelined and the overhead of off-
chip memory access is hidden if the pipelining is full.
Besides, if a program exhibits data locality, the com-
putation threads also can re-use the data percolated to
on-chip memory. Note that the percolation model re-
quires a synchronization at the end of each pipelining
step. The tasks of the three steps may be assigned to
different thread blocks in CUDA. Unfortunately there
is no mechanism to support synchronization among
thread blocks, and a global synchronization proposed
by Volkov'® is employed. The idea of percolation is
similar to streaming programming style of gather-com-
pute-scatter. The streaming programming uses a DMA
mechanism to address issues of data movement between
CPU system memory and GPU memory, percolation
utilizes the massive multi threaded hardware units to
hide the overhead through the GPU memory hierarchy
and requires less hardware cost. In this section, it
shows how to apply percolation programming to improve
coalesced memory access for the alignment algorithm.

2.1 Rotation and translation

The kernels Rotating, Translating and unwrapping
in Table 1 are responsible for rotation and shift opera-
tions on an image. The basic procedures of the three
kernels are similar: for any given point in the new im-
age, calculate its corresponding coordinate in the origi-
nal image and find the right pixel, then store the points
into the new image. Thus the algorithm can be general-
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ized into 2 steps: coordinate computation and interpo-
lation. Their difference in coordinate computation,
however, affects their memory access behaviors, re-
spectively. For translation operations, the coordinates
of pixels are transformed between two rectangular coor-
dinate systems, which leaves the dataloads and stores
coalesced easily. Both rotation and unwrap operations
transform between rectangular and polar coordinate sys-
tems. Their computation however leads to the amount
of un-coalesced memory access because of the una-
ligned coordinate system. Since both operations have
the same computational behavior, only the optimization
strategy is described to rotation.

For rotation operation parameters determining the
angle the pixel needs to move around the image center
are given in the polar coordinate. Therefore, to access
the corresponding element in memory, a polar to rec-
tangular coordination transformation has to be per-
formed to calculate the actual index of the element. For
a point located in (x, y) with a rotation angle of 6, the
old point coordination is (xcosf + y sinf, xsinf +
ycosf). Since transformation result is unlikely to be
right on an integerpoint, we need to perform an inter-
polation to compute the value of the 2-D function at the
given position. Such interpolation involves 4 points
around the newpoint. The result is determined by the
point’ s distance to each of its 4 surrounding integer
points. However, such pattern violates the coalesce
rules directly.

Note that the rotation algorithm is iterated with
different angles. Our algorithm performs rotations of
multiple angles in parallel. The image is concurrently
rotated from three consecutive angles. With the perco-
lation idea the interpolation operation is split into three-
stages: read data from the original coordinate, com-
pute, write back to the new coordinate. For read oper-
ation the elements in the same row are assigned to the
same warp, thus the words accessed by all threads are
easy to be arranged into the same segment of size equal
to 128 bytes. Then the mapping strategy between data
and thread warp for writing back operations is deter-
mined by the rotation angle. All elements along the
same rotation angle are assigned to the same warp.
Therefore, the un-coalesced memory accesses are re-
duced. On the other hand, such data access pattern
clearly demonstrates data locality and reuse. Each iter-
ation reads 4 adjacent points in the image, and the fol-
lowing iteration is expected to be reused between 1 or 2
of the previous loaded points. The exact ratio of data
reuse is | tan(2 x @) | x2 + (1 -l tan(2 x0) | ) =
1 +| tan(2 x9) I.

2.2 Correlation function

The calculation of both auto- and cross-correlation
functions is composed of three similar steps: i) forward
Fourier transformation on two input images. ii) blend-
ing operation on the transformed images. iii) backward
Fourier transformation on the blent image. Among the
three correlation functions, CCFX is relatively different
in that its operations are on a per-row basis because of
the 1D real Fourier transformation. In this sub-section
it presents the parallel algorithm for the blending oper-
ation and multiple 1D Fourier transformations.

Assume that the size of a particle is nx x ny, the
blending operation reads the particle”’ s data and pro-
duces one of the same length. The original implemen-
tation needs to read two elements from both input
streams and write two elements into the result stream,
making memory coalescing difficult. Keeping the per-
colation idea in mind again, we split the blending op-
eration into three explicit stages: Mapping data from
global to shared memory, compute with the loaded data
in shared memory, write back result to global memory.
The parallel algorithm performs blending operations
row-by-row of the image. A trick is to choose different
data-thread mapping strategies to avoid uncoalesced ac-
cess in global memory. During reading/writing data in
global memory the number for threads is the same with
the number of elements, and each element is consecu-
tively mapped to each thread. The real calculation op-
erations are finished by half number of threads, that
is, each thread reads/writes two elements in shared
memory.

The algorithm described in Algorithm 1 needs 1D
Fourier rotational  alignment
(CCFX). Note that the transformation in each row is
too small to amortize the CUDA kernel invocation over-

transformations  for

head. Fortunately, since rows in the matrixes are
stored in a continuous manner, and there is no data de-
pendency between calculations on different rows, dif-
ferent iterations of the blending operation are merged to
make batched Fourier transformation. While the corre-
lation kernel reads elements from both ends of the array
towards its center, the load is kept from the global
memory to the shared memory sequential within each
thread block. When nx is not multiple of 16, the rows
are paded to align the half warpbase addresses to get
the maximum coalesced accesses. After such adjust-
ments, batched Fourier transformation demonstrates an
approximated 5X speed up against original implementa-
tion, and the invocation overhead in the correlation
kernel is reduced to about 15% of total runtime.
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3  Design of customized accelerator on
F-PGAS

A key observation underlying our stream architec-
ture is that the kernels of EMAN can be broadly classi-
fied into 3 categories: computing, memory and stream.
The design of the system is geared towards architecture
support that assists the implementation of each kernel
category. The kernels of EMAN will be mapped to ded-
icated hardware modules on FPGAs: computing mod-
ules are used to wrap arithmetic operations; memory
modules are used to implement data access as well as
related address calculation; stream modules are com-
posed of several computing and memory access mod-
ules. In this section, the stream architecture will be
discussed in detail, which covers the topic of how to
extract and classify candidate kernels from EMAN for
acceleration, how to implement each hardware module
and how to map a complex computing flow to a stream

module.

Table 2 Kernel categorization
Name Category  Description
MCF C Autocorrelation
CCFX C Cross correlation on x-dimension
CCF C Cross correlation with reference
Unwrap C Rectangular to polar coordination
Rotate C Rotates image by given angle
Translate C Translates image by given offset
DOT C Scoring the alignment
Resize M Changing image size
Rot180 M Rotate image by 180°
hFlip M Flip images horizontally
Bit Reversal M Used in FFT kernels
Transposition M Used in the row-column 2D FFT
RTFAlign S Aligning with RTAlign and hFlip
RTAlign S Aligning with Rotate , Translate

CCFX, CCF and DOT

MakeRFP S Calculate RFP MCF and unwrap

3.1 Kernel classification

Even accounting for only a small fraction of
EMAN, particle alignment contains hundreds of ker-
nels and tens of parameters. However, based on partial
evaluation and runtime profiling, the 23 most time-con-
suming kernels can be classified into 3 categories;
computing kernels, memory kernels and stream ker-
nels. Table 2 summarizes the identified kernels in
EMAN and their workload descriptions. For simplicity
of presentation, some computing kernels in Table 2 are

combined, thus the number of computing kernels can
be reduced to 7.

Memory: Memory kemels are of limited use in
their own right, by which it is meant that they must be
combined with computing kernels to deliver on compu-
ting functions. However, the efficiency of memory ac-
cess can exert profound impacts on overall system per-
formance. For example, FFT is the only kernel that
uses the bit reversal memory access pattern, which
gives poor data locality on CPU. The data access pat-
terns, which are extracted by profiling the memory ad-
dress sequences, are implemented with a unified data
flow module (DFM). By introducing DFM, it becomes
possible for computing modules to do pattern-based da-
ta access. The topic of how to extract data access pat-
terns is covered in Section 3.3, whereas Section 3.5
introduces the DFM in detail.

Computing: With respect to loop boundaries,
computing kernels are composed of one or more loop
statements. Instead of implementing computing kernels
as heterogeneous and inflexible modules that directly
work on raw memory controller interface, two addition-
al steps are used to facilitate the implementation of
computing kernels; 1) Data access patterns are ex-
pressed in the form of either fix-step counters (regular
patterns) or mapping tables between iteration indices
and requested memory addresses (irregular patterns) ;
2) All data access patterns will be implemented collec-
tively with DFM. Section 3.4 discusses the kernel im-
plantation in detail.

Stream: Stream kernels provide the specification
of assembling the computing and the memory access
kernels to form large and complex computing streams.
The computing flow of EMAN is relatively simple and
regular, which makes it possible to construct the com-
puting streams as linear pipelines. Section 3.4.3 gives
a concrete example of implementing the RTAlign
stream kernel.

3.2 System architecture

Before introducing the hardware implantation in
detail, Fig. 1 gives an overview of the stream architec-
ture. The core of the architecture is a hybrid memory
controller, whereby on-chip and off-chip memory de-
vices are managed with a single virtual address space.
Different memory devices can be explicitly accessed by
specifying memory addresses exclusively. A unique
feature of the hybrid memory controller is the inclusion
of 2 dedicated data flow modules ( DFMs) , which can
be used to implement various data access patterns. In-
tuitively, the overhead of data transfer can be hidden
by overlapping them with the computing. In order to
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achieve this overlap, a data pre-fetch unit is integrated
in the memory controller, which can be configured to
do forward as well as backward pre-fetching at the
granularity of image line. Section 3.5 gives more de-
tails about the hybrid memory controller.

I Host CPU | I On-chip storage I
$
PCIE Interface ~-=» Ctrl path
: — Data path
N
Register file -
Virtual § |
DMA engien Hybrid
Data path memory
register manager TT— memory
Pre-fetch controller
register Data controller
Pre-fetch
Pattern unit | Pre DFM | PostDFM |
register

adapter |

Computing streams
Fig.1 Overview of system architecture. Functions are imple-
mented in form of a computing stream with kernels
mapped as circles. Data flow modules are used to im-

plemented data access patterns

The configurable computing streams are construc-
ted by arranging the hardware modules and bypass
channels to form a linear deep pipeline. Fig.3 illus-
trates the proposed computing stream to accelerate the
RTAlign kernel. Besides the DFMs lie in the memory
controller, DFM can also be placed in the computing
stream. For example, in Fig. 3, there are two data re-
order modules (used for data flow permutations) in the
2D FFT kernel. Multiple computing streams can be
placed in parallel, the port adapters are used to switch
the data path between the memory controller and the
computing streams.

Our system is configurable in two aspects by
means of writing corresponding control registers: 1)
The data path of the computing stream can be con-
trolled to some bypass stages. As a result, a computing
stream can be used to implement various functions; 2)
By configuring the DFMs and the data per-fetch unit,
the memory controller can be controlled to do pattern-
based data access. Configuring DFM only needs to read
configurable bit file from bit file cache and write it to
DFM registers , which takes about fifty nanoseconds. By
contrast, FPGAlogic function is traditionally changed
by loading new FPGA binary file into FPGA device,
which is named function level configuration consuming
approximately several milliseconds for Virtex5 1L.X330.

3.3 Separating computing flow from data flow

Most applications, including EMAN, are rarely
developed to take the aforementioned 3 kernel types in-
to consideration. It is a common phenomenon that com-
puting and data access are entangled with each other.
The separation between computing flow and data flow
manifests itself in two dimensions: First, application-
performance is deeply influenced by the ability of over-
lapping computing with data access'®’, by separating-
data flow from the computing flow, some advanced data
pre-fetching and reordering strategies can be utilized;
Second, lots of data access of applications are highly
structured, for example, data accesses within loops are
often subscripted by loop indices, and result in either
sequential or stride data access patterns. The cost to
implement computing kernels can be greatly reduced by
separating memory operations for dedicated considera-
tion. In this way, computing kernels can be abstracted
as black boxes with FIFO in and FIFO out.

The analysis of data access patterns can be simpli-
fied and confined within loop statements. A LLVM loop
pass is used to facilitate the analysis process. First,
data will be clustered into arrays with layout optimiza-
tion, which makes it possible to use memory addresses
to identify data access to specific data types; Second,
by recording the memory addresses issued in loop state-
ments, regular and irregular data access patterns can
be expressed as fixed-step counters and lookup tables,
which map iteration indices to the memory addresses
requested by loop statement. In this way, the memory
addresses will be calculated statically, and computing
kernels can dispense with the overhead of data access
and get a simplified view of the computing flow. At
last, computing kernels, which contain stateless loops
(such as vector addition) only, will be implemented as
simple arithmetic modules that operates on a continued
data flow.

Furthermore, it is still needed to maintain regis-
ters and loop counters for stateful loops with loop-car-
ried dependency (vector summation) and some initial-
ization logics (image filters). In our system, data ac-
cess and related memory address calculations will be
offloaded to the data flow modules (DFMs) in memory
controller, which pre-fetch, reorder and push data to
computing kernels in expected order. Computing
stream construction can be simplified as a process of
instantiating computing kernels and selecting corre-
sponding data access patterns supported by DFMs in
the memory controller.

3.4 Kernel implementation
Due to the complexity of EMAN, it is unpractical
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for us to implement the entire computing flow as a sin-
gle unit. On the other hand, considering the high de-
sign and debugging cost of using FPGAs, we argue that
it is also not a cost effective way to implement some
kernels of EMAN on FPGAs, such as 3D-FFTs, heu-
ristic particle selection, etc. Therefore, the perform-
ance of the FPGA accelerator will be dictated to a large
extent by the ability to evaluate, extract and offload the
most beneficial parts of the application. Runtime profi-
ling indicates that, the RTAlign kernel that occupies
over 95% of total execution time is the foundation, on
which the process of particle classification ( Classesby-
mra) and alignment ( Classalign 2 ) are built. In the
following part, the discussion is limited to FPGA accel-
eration of the RTAlign kernel only. Three representa-
tive kernels, mixed radix 2D FFT, image rotation by
180° and the RTAlign stream kernel will be used to
demonstrate how to implement each category of kernel
in the system.

3.4.1

The computing kernel implementation is built up

Computing kernel

on a one-to-one correspondence between the loop state-
ments and the computing modules ( circle nodes of
Fig.1). In order to reduce the design cost and in-
crease modular reuse, the computing modules are im-
plemented and wrapped in a unified interface. Given in
Fig.2, the unified interface is composed of standard

) Data Result )l Data Result jum)

FIFO signals, flow control signals and signals for ker-
nel configuration. The advantage of partitioning and
implementing the computing flow as separated kernels
with common interface is that it gives us many coarse-
grained building blocks that can be flexibly composed
to form various complex computing streams.

Based on the unified module interface, an auto-
matic HDL core generator framework in Matlab is de-
veloped, which can be used to translate given data flow
graphs ( DFGs) of kernels ( generated by GCC) to
HDL implementations. The nodes of DFGs are sched-
uled to different pipeline stages with respect to data de-
pendency. The pipelined DFG will be used to generate
the HDL descriptions. The strength of the proposed
core generator is justified by the ability to generate the
There
are plenty of existing researches related to FFT design
on FPGAs; however the issues of prime-radix FFT, 2D
FFT and real FFT are rarely discussed. Therefore, it is
still needed to implement the FFT kernels on our own

. . . . 9
prime-radix FFT cores in our previous work .

efforts.

The datapath of the computing stream can be con-
trolled by configuring the bypass switches in Fig. 3.
Therefore, different FFT factorizations will be mapped
to different paths flow through the computing stream.
For example, the lower part of Fig.3 gives the struc-
ture of an 8960-points FFT pipeline, which is degraded
to execute 1792-points FFT in current configuration. In

current work , partial reconfiguration of individual hard-
—> Ready Empty =} Ready Empty =—> . . . .
. o ware modules is not yet considered. With trivial over-
<44 Full Stop Ful t0p i . .
AT N head of dﬁtapat}.l sw1tIch.1ng, @;{iulﬁs ca.nh be shared
_— Cfig Out CgTn Cfg Out peespp across configurations. It 1s possible that with proper or-

ganization of the computing flow, the frequency of

Fig.2 Interface of computing modules. Forward data transfer- . . .
g puling : . reconfiguration can be reduced or even avoided.
and backward flow control are implemented with stand-
ard FIFO interface
Swith
Actived Path ) Inactivated Path
[ Port | Taccumulate || Inactivated —
7 1 nactivate: ctive
Adapter | Lo ‘ Madule Madule
e Rotate
Translate
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!
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Fig.3 Computing stream for accelerating the RTAlign kernel
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3.4.2 Memory kernel

In order to improve the alighment sensitivity, in-
put images will be compared with up to 4 mirror images
(original, horizontal flip, vertical flip and rotating by
180°) in EMAN. For CPU implementation, these mir-
ror images are generated with explicit memory copies.
Taking the Rot180 kernel in Table 2 as an example,
the memory copies introduce lots of data cache misses
and exert severe impact on application performance.
With the support of the customized memory controller,
the Rot180 kernel can be implemented in following 3
steps: Backward pre-fetching image line-by-line; Buff-
ering data lines; Flushing the buffered lines in reverse
order. In this way, only one copy of reference image is
stored in memory, other mirror images can be genera-
ted on-the-fly.

Along with the coarse-grained image-level data ac-
cess patterns, the memory kernels are also extracted
and developed for implementing fine-grained data ac-
cess patterns embedded in the computing kernels.
These fine-grained memory access kernels can be uti-
lized to implement various data flow permutations, such
as the (de-) interleave and padding/clip operations
listed in Table 3.

Table 3 Computing steps of the RTAlign kernel

# Function Activated Modules  Memory Controller'

1D FFT 2D FFT I. interleave/
0. deinterleave
2 1D IFFT/ 2D FFT/CCF/ I interleave/2-Op. 2

CCFX/Ace. Acc. &Max

Rotate RotateTranslate I clip/random access
4 1D FFT 2D FFT I. interleave/
O column write/
deinterleave
5 1D FFT 2D FFT/Post- 0. column write/
Vertical Rotate deinterleave
6 CCF CCF I. interleave/2-Op. 2
0. column write
7 1D IFFT 2D FFT/Pre- O: column write
Vertical Rotate
1D IFFT R2C 1. interleave
1D IFFT 2D FFT/Flow Split
10 MAX Acc. & Max I. clip
11 translate I: clip
12 Dot Dot I. intelrleave/Z-Op.2

' for input, O for output memory access patterns.

2 Reading two operands from two separated addresses.

3.4.3 Stream kernel

Fig. 3 illustrates the computing stream for acceler-

ating the RTAlign kernel. The computing and memory
access modules are separated by runtime configurable
bypass switches. Different functions can be fulfilled by
activating the required modules while bypassing the
others. The data flow modules (DFM) in the 2D FFT
kernel are used to implement data flow permutations
between FFT stages. Along with the control signals for
function selection ( for example, the module for dot
production can also be configured to do accumula-
tion) , signals for switching configuration are wrapped
in rewritable registers.

For complex computing flows, which cannot be
implemented with a single datapath configuration, the
function can be emulated by means of activating the
computing stream multiple times with different datapath
each time. For example, it is needed to configure the
stream pipeline 7 and 12 times to implement the
MakeRFP and the RTAlign kernels. Table 3 explains
the 12 computing steps of the RTAlign kernel, in
which the 2D FFT/IFFT is built upon the row-column
algorithm and requires invoking the 1D FFT module
twice.

3.5 Memory subsystem and the configurable dat-
aflow module
Our memory system is composed of DRAM,
SDRAM and on-chip BRAMs and is managed under a
single virtual address space. From the viewpoint of the
high-level users, data access on each type of memory
can be controlled explicitly by invoking write/read ac-
tions at the corresponding memory addresses. The con-
figuration of the virtual memory space is controlled by
software and can be changed online. In a typical con-
figuration, the lower addresses (512kB) are allocated
to on-chip BRAM followed by SDRAM (16MB) and
DRAM (2GB). The on-chip BRAMs are used as a
scratch pad memory to store small intermediate data
(scalar and vector) between consecutive pipeline sta-
ges. The SDRAM is further divided into two parts,
which are used for data pre-fetching and intermediate
results buffering respectively. The final results will be
offloaded to the off-chip DRAM and transferred back to
host CPU via DMA through PCle. The bandwidth of
the off-chip DRAM and SDRAM is 3.2GB and
6.4GB, while the system bottleneck lies in the PCle
interface, which is only 2GB.
The pattern-based data access is implemented with
the data flow modules ( DFMs) , which is composed of
on-chip BRAMs,

counter and flow control logic. As illustrated in Fig. 4,

address generator, configurable

the 4 BRAMs are organized into 2 groups and are con-
figured to work as a Ping-Pong buffer. When one group
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is buffering data in current phase, the other group will
be used to provide data buffered in previous phase.
The data rate between input and output of the compu-
ting stream may become unmatched, implemented by
monitoring the back-pressure signals of the computing
stream, a backward flow control mechanism is provid-

ed.

BRAM [—— BRAM [—— BRAM —— BRAM
Bank0 |— Bankl |—— Bank2 |— Bank3
256

»
{M.UX‘)

loat/fix_poinfConfigure [ W/R addr |2 &
convertor | registers || generator f...:

Address Center
BRAM logic
~ A~

Data width [Configure
convertor | register

Data rate
controller

Configure Data Input
counter pressure suppression

(-ennn

o
128 164/1282565

Buffer Sequential Configure Address
&Reorder convertors mapping

Fig.4 Data flow module with configurable address generation,
data format conversion, configurable counter and flow

control logic

The DFMs as well as the data pre-fetching unit in
the memory controller are controlled by candidate data
access patterns. In particular, DFMs can be controlled
by varying address generation logic, data width, port
number and the data format converter. For example,
data access patterns of fixed steps (regular patterns)
will be implemented with the counter logic by setting
the counter range and step. In contrast, the address
mapping arrays ( irregular patterns) will be used to
configure the address BRAM in the address generator.
Take the computing steps to implement the RTAlign
kernel in Table 2 as an example, DFMs can be used to
carry out various data access patterns. The process of
interleaving two lines of data with length of N can be
implemented as follows: 1) Configuring the data pre-
fetched unit to read two lines of data each time; 2)
Storing the pre-fetched data in a BRAM group in DFM;
3) The address BRAM in the address generator, which
is loaded with the interleave NV X2 content in advance,
is used to generate reading addresses in the BRAM
group.

Along with the 4 address contents illustrated in
Fig.5, new data access patterns can be generated on-
the-fly. The primary drawback of using the indirect ad-
dress mapping is that it introduces extra on-chip storage
overhead. However, for this problem, the length of the
address sequence is relatively short, which makes the
cost of additional storage affordable. For example, the

longest address sequence in our system comes from the
8960 FFT module, which requires an on-chip storage
as large as 15.312kB.

The ability to do column-oriented writing is the
major factor that contributes to the performance speed-
up of our system. However, the datapath of the DRAM
(128bit) and SDRAM (256bit) are both wider than
current computing datapath ( 64bit). The DFM is
used, on one hard, to mitigate the bandwidth differ-
ences by buffering multiple columns before offloading
data to DRAM and SDRAM. On the other hand, the
DFM is also used to generate the column-oriented writ-
ing addresses, which can be easily mapped to the
counter logic.

Address BRAM contents
e il
0 0 0 > & a0
1 4 il6 4 \ » B
3 1| i[5 2 > C
3 5 | 4 6 > D
4 2| i3 - > E
5 6 |2 5 - > F
6 B g > G
. Addr; 7
7l 7 i} 0 7 > H
Scquential Interleéve Reverse Bit . Data
4X2 reversal buffer

Fig. 5 Address mapping in DFM. The address contents are

calculated off-line, are used to do indirect memory ac-

cesses
4 Experiment results

4.1 System and experiment setup

The baseline CPU EMAN program is parallelized
on a 4-core 2. 27GHz Intel Xeon E5520 and compiled
with the latest Intel compiler. The proposed GPU algo-
rithm is implemented by rewriting the computing ker-
nels of EMAN using CUDA. The experimental platform
is GTX480 (Fermi). The GTX480 has 448 cores or-
ganized into 14 SMs, which can concurrently execute
multiple warp blocks. Each SM in GTX480 has a set of
registers and a 64kB local storage, which can be con-
figured as 16kB Ll-cache and 48kB shared memory.
All SMs share a unified 768KB 12-cache and the 3GB
global memory.

The proposed stream architecture is implemented
on our customized FPGA accelerator card. Along with
the off-chip memory chips ( DDR2 SO-DIMM, DDR2
memory chips and QDRI SRAM ), the accelerator
card is composed of two FPGA chips and communicates
with the host CPU via PCle interface. The computing
stream is implemented on the computing node ( Xil-
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inxXC5VLX330-1), while controlling and data trans-
ferring are offloaded to the control node ( Xilinx
XC5VLX70T). The performance and area of system
design on computing node are evaluated with the Xilinx
ISE 11.4" tool chain. Full system power is measured
with the FlukeNorma 4000 Power Analyzer''’.

In the experiments, two classes of images with dif-
ferent resolution are used. Table 4 summarizes their
features. The size of pixel is chosen as a metric of
problem size in our experiments. For the two data sets,
SMALL is a collection of Hepatitis B virus images,
while LARGE represents a set of images with larger

pixels.
CPUx1 ——
L CPU x4 xxx=1
100 FPGA =mzza
- G800 ——
’g GTX480 ESSS%
o 10 B
E B
=
-] |-
1¢ N |F
i NEENGE NER ;
: \El: \Sl 1 IS
.1 14 N- 2::52- N A\ 'ZEZ ..
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4.2 Kernel performance

Fig.6(a) and (b) compare the execution time of
the computing kernels in Table 2. The speedup of
utilizing FPGA varies from 2 times ( Max) to 12times
(CCFX). It is observed that kernels can achieve dif-
ferent speedups even with a similar computing flow.
For example, the Rotate and Unwrap kernel exhibit a
similar computing flow. The coordinate transformation
of Unwrap, however, spans only one half of an image,
which contributes to the reported lower speedup when
compared with the Rotate kernel.

100 £

N
s
N
N
N

[ L I3 L REEN RS N
MCF Unwrap CCFX Rotate Max Translate

Fig.6 Kemel execution time of single-threaded CPU, 4-cores CPU, FPGA, G80 and GTX480

The performance of GPU can be greatly influenced
by the data parallelism degree. For example, due to
the inefficiency of parallelism degree, the CCFX kernel
that executes only 1D FFTs achieves a low speedup on
GPGPUs when compared with the MCF and CCF ker-
nels that contain extensive 2D FFTs. Due to the advan-
tages of frequency and bandwidth of the GDDR memo-
ry, except for 2 kemels ( CCFX and Translate ), the
performance of using GPU is clearly better than FPGA.
On the other hand, the GDDR memory on GPGPUs,
which is optimized for sequential data access, incurs a
high performance penalty for irregular data access pat-
terns in kernels such as Translate. The speedup of
using OpenMP to parallelize EMAN on CPU lies in the
range of 1.6 times (Translate) to 3.5 times (MCF).

(a) after 1st refinement

(b) after 2nd refinement

(c) after 3rd refinement

With the increase in image size, the speedup of using
OpenMP, FPGA or GPU will get improved marginally

because of the increased data-level parallelism.

4.3 Application speedup

Currently single-precision floating operations can
satisfy most of real experimental requirement ( though
double-precision is necessary in the near future). The
algorithms running on GPU-CUDA produce identical
results as on CPU for all test sets. In the experiment
with Hepatitis B virus (referred to as LARGE in the
context) Fig.7 shows five steps of 3D reconstruction on
GPU-CUDA, which are exactly the same with that on
CPU.
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(d) after 4th refinement (e) after 5th refinement

Fig.7 The first five steps of 3D reconstruction for Hepatitis B virus (LARGE dataset )

Table 5 shows the total execution time of a single
iteration step of the 3D reconstruction process. The FP-
GA outperforms the 4-cores CPU by 2. 54 times, while
the GTX480 further outperforms the FPGA by 3. 76

times. Workload in EMAN increases quadratically with
increasing image size. However, the arithmetic intensi-
ty remains unchanged, therefore the increased work-
load cannot be utilized to introduce further performance
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improvement. For FPGA implementations, the total ex-
ecution time increases about 3 times when image size
changs from 256° to 512%, the improved speedup over
CPU is largely atiributed to the performance degrada-
tion on CPU. In contrast, large images can easily satu-
rate the 448 cores in GTX480, which accounts for 2
times speedup. It is considered that FPGA and GPG-
PUs are more beneficial for Cryo-EM 3D reconstruction
on large images.

Table 4 The images used in our experiments

Name Pixels Particles Projections
SMALL 256 x 256 19841 226
LARGE 512 x512 7224 207

Table 5 Execution time (ms) and speedup
normalized to the single-threaded CPU

Time-256  Speedup  Time-512  Speedup
CPU x 1 80. 86 - 377.21 -
CPU x4 30.86 2.62 124.9 3.02
GTX480 5.82 13.9 13.10 28.8
FPGA 12.31 6.6 49.26 7.7

4.4 Power, area and frequency

Table 6 lists the measured static, dynamic and
working power of each device, where the static power
is measured as idle power and the dynamic power is av-
eraged across the entire execution. The working power,
which is calculated as the difference between dynamic
and static power, is used in the following power analy-
sis. When measuring the power of system configuration
with either FPGA or GPU card, in order to get an ac-
curate evaluation, the power consumption of the host
PC is subtracted. For simplicity, it is assumed that the
host PC remains idle during the execution of the accel-
erator cards. The power cost measured in millijoule is
computed as the product of working power and the exe-
cution time. The multi-threaded EMAN introduces a 3
times speedup at the cost of 27% increased working
power; however, with reduced total execution time, the
power cost of using 4 threads is only 48% of the single-
threaded EMAN. The power consumption data shows
that the customized architecture outperforms the CPU
and GPU by 7.3 times and 3.4 times, respectively.

Table 6 Power consumption analysis

Device Static Dyn. Working Power
CPU x 1 89W 119W 30W 2426m)
CPU x4 89W 127W 38W 1173m]
GTX480 53W 147W 94w 547m]

FPGA TV 20W 13W 160m]

It is worth noting that the GTX480 chip is built
with the 40nm process, while the Virtex5 FPGA is
built with the less efficient 65nm process. Therefore,
the performance and power cost of the FPGA accelera-
tor can be further improved by upgrading to the Virtex6
and Virtex7 families. The area consumption and fre-
quency of the MakeRFP and the RTAlign stream are
summarized in Table 7. In practice, the two streams
share lots of common blocks and can be combined to
form a more compact stream.

Table 7 FPGA resource consumption

DSP48Es LUT-FFs BRAMs Freq.
MakeRFP 106(55% ) 56.5K(27% ) 140(48% ) 180MHz
RTAlign 140(72% ) 55.5K(23% ) 133(46% ) 180MHz

5 Conclusion

In this paper, a coarse-grained stream architec-
ture is introduced, in which the computing datapath is
run-time configurable. In order to decouple the compu-
ting workload from the data flow, to a dedicated data
flow module ( DFM) is resorted to support the function-
ality of pattern-based data access. Complex functions
can be emulated by configuring the datapath of the
computing stream multiple times, whereas both data
operations and related address calculations are offload-
ed to the DFMs.

The stream architecture is evaluated by accelera-
ting a large-scale scientific application, which is an
open source software package for single-particle 3D re-
construction from Cryo-electron microscopy images, on
the customized FPGA accelerator card. The FPGA-
based accelerator design is compared with the parallel-
ized versions on a multi-core CPU and an up-to-data
GPGPU. Measured in raw performance, the FPGA-
based design outperforms a 4-cores CPU by 2. 54
times. When compared with the previous GPU-based
design, the FPGA-based design is about 3 ~ 4 times
slower. However, we argue that it is still beneficial to
use the FPGA when taking the 7 ~ 8 times power effi-

ciency into consideration.
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