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Abstract

This paper proposes an outdoor guide system using vision-based augmented reality (AR) on

mobile devices. Augmented reality provides a virtual-real fusion display interface for outdoor guide.

Vision-based methods are more accurate than GPS or other hardware-based methods. However, vi-

sion-based methods require more resources and relatively strong computing power of mobile devices.

A C/S framework for vision based augmented reality system is introduced in this paper. In a server,

a vocabulary tree is used for location recognition. In a mobile device, BRISK feature is combined

with optical flow methods to track the offline keyframe. The system is tested on UKbench datasets

and in real environment. Experimental results show that the proposed vision-based augmented reality

system works well and yields relatively high recognition rate and that the mobile device achieves real-

time recognition performance.

Key words; mobile augmented reality, location recognition, vocabulary tree, optical flow,

tracking and registration

0 Introduction

Augmented reality (AR) is an important research
direction in the computer vision field. Computer-gener-
ated virtual objects can be projected into the real envi-
ronment seamlessly. The technology of mixed virtual
and actual reality is widely applied in guide services,
such as location-based service. SPRXmobile developed
the first mobile augmented reality browser Layar in the
world in 2009. The browser offers various items of sur-
roundings based on augmented views. Texts or image
information associated with geographical position are
laid over the camera view. Nokia City Lens is also a
popular augmented reality browser which can provide
dynamic information about users’ surroundings such as
hotels, attractions in the forms of virtual objects over-
laid above buildings.

Most of traditional AR browsers such as Layar and
City Lens are based on hardware sensors to locate us-
er’s positions. Those hardware sensors include GPS,
electronic compass and the accelerometer. However,
built-in sensors on the cell phone such as GPS usually
have low sensitivity and others may have cumulative er-
rors. By contrast, the vision-based location recognition

method can achieve sub-pixel accuracy and a more au-
thentic experience for users. Location recognition and
mobile tracking are the key technologies for an outdoor
AR browser. Now, outdoor location recognition re-
mains a challenge for many reasons. Occlusion, illumi-
nation change, repetitive structure of outdoor buildings
are factors affecting the recognition accuracy. Mobile
tracking with six degrees of freedom (6DOF) has to
face the complex changes of scale and lighting condi-
tions. It must give absolute measurements with respect
to a given coordinate system, which is very robust and
runs in real-time. The limited memory and computing
power of the mobile devices greatly influence the ro-
bustness and real-time performance of vision-based AR
browser.

In this paper, a C/S framework for mobile AR
browser is proposed, which can be used in city-scale
outdoor guide system. The main contributions of this
work are summarized as follows:

(1) A vocabulary tree algorithm''’ is employed
with an initial clustering center selection method for lo-
cation recognition. The selection of initial clustering
center can speed up the training of the vocabulary tree
and improve the clustering effect of the vocabulary

tree.
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(2) BRISK'? feature is combined with optical
flow to achieve robust and real-time tracking of mobile
devices.

(3) An image and feature compression strategy is
applied for the network transmission without affecting
the precision of recognition rate.

1 Related work

Location recognition is closely related to image re-
trieval problems. For large-scale image retrieval, the
commonly adopted scheme is the machine learning
method, which utilizes classifiers to do supervised
learning of image features and then transfers image re-
trieval to a feature classification problem. Recently,
researchers have proposed support vector machines
(SVM), K nearest neighbor ( KNN) , principal com-
ponent analysis (PCA) , random Ferns and other scene

recognition algorithms*”’

, most of which have low pro-
cessing speed and are unable to meet the real-time re-
quirements of the AR system. The random Ferns meth-
od has relatively high recognition rate and processing
speed. However, the random Ferns method requires a
lot of memories during operation and cannot be applied
in a city scale location recognition. David Nister ap-
plied the vocabulary tree algorithm for scene recogni-

[

tion'" and achieved high recognition rate. The closest

work to ours is probably carried out by Schindler'®’ and

] They both adopted Nister’ s vocabulary tree

Baatz
for location recognition. The traditional vocabulary tree
including Nister’ s method is based on a randomly se-
lected initial feature clustering center. For large-scale
image feature clustering, it will be time consuming.
The clustering algorithm often clusters slowly and does

not even converge due to random clustering center. Al-

though, Schindler'® improved the scoring method of
]

visual words, and Baatz"®' introduced image prepro-

cessing and re-ranking method, the traditional cluste-
ring method affects the recognition rate. In our work,
we propose a novel selection method for initial feature
clustering center, which can get good clustering center
quickly and avoid unnecessary iterations.

Real-time and robust tracking methods also have
received a wide range of attentions, especially methods
applied on mobile devices. Wagner'"®' described modi-
fied SIFT'"" and Ferns'®’ approaches and created the
first real-time 6DOF natural feature tracking system

! intro-

running on mobile phones. Klein and Murray'"
duced a keyframe-based SLAM'"’ system on a camera
phone. They proposed a series of adaptations to the
Parallel Tracking and mapping system to mitigate the
impact of the device’ s imaging deficiencies. These
above mentioned methods can be only applied in a
small work area. Leutenegger proposed the BRISK'*
method for keypoint detection, description and matc-
hing which have adaptive, high quality performance at
a dramatically lower computational cost. The key to
speed lies in the application of a novel scale-space
FAST-based detector' "’ in combination with the assem-
bly of a bit-string descriptor'"”! from intensity compari-
sons retrieved by dedicated sampling of each keypoint
neighbourhood. Compared with SIFT and SURF'®'|
BRISK has real-time performance. In our system,
BRISK feature is employed to initialize the mobile
tracking and optical flow is used to speed up subse-
quent computing.

2 Methods

In this paper, a client-server architecture is uti-
lized to realize location recognition and mobile track-
ing, and an overview of the framework is given in
Fig. 1, which contains three modules, i. e. location

recognition, mobile tracking and network transmission ;

Mobile Remote
Client Server
—————————————— e s o |
I i ! Select Initial !
| ’—> I P ' Vocabulary Tree «—  Clustering «— SURF Feature | |
' mage || Cent I
I I enter
i v I I y I
I Render | | |
I BRISK || i |
! Feature | | |
i - : |
' Pose | I [ Keyframe Train Images | !
' < Matchi BRISK Feature 4— I
: Optical Flow Fienne I | Database —_— Database :
| |

Fig.1 Framework of the mobile augmented reality system

Location recognition. In the offline stage, SURF
features are extracted from the training images stored

on the remote server database. These features are then
quantized into a vocabulary of visual words with a hier-
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archical k-means clustering scheme. A selection meth-
od of initial clustering centers is applied to the original
k-means algorithm. In the online stage, query images
from mobile devices are fast indexed by the above tree
structured vector quantization.

Mobile tracking. BRISK features are offline ex-
tracted to establish the keyframe database from the
training images stored on the remote server. Two types
of feature tracking is combined to realize real-time per-
formance. BRISK features are detected and tracked
frame-to-frame by computing optical flow. The point
correspondences between features in the captured frame
and the offline-built keyframe can be used for estima-
ting a camera pose.

Network Transmission. A JPEG-compressed
query image is transmitted from a mobile device to a
remote server and then queries a database hosted on
the server. Then, compressed keyframe features are
transmitted to the mobile device.

2.1 Location recognition

The vocabulary tree is widely used for the recogni-
tion of large scale images. It has relatively high recog-
nition rate and speed which is suitable for our outdoor
location recognition. Image features are offline extrac-
ted and clustered to build a vocabulary tree. The
scores of visual words are computed with the TF-IDF
model according to Eq. (1). w, ;is the weight of image

jon visual word i. m, ;is the count of visual word i on

image j. N is the total number of train images and n; is
the count of images which includes visual word i.
N
wi,j:mi,/XIg; (1)
i

A similar quantification strategy is used for query
images online. The query process is provided as

S, @) = Ild,-ql, (2)

Generating clusters for such a large quantity of da-
ta presents challenges to traditionally used algorithms.
For large-scale location recognition, clustering time of
mass images is very long as the initial clustering center
is randomly generated. In order to obtain ideal cluste-
ring results, we designed the selection methods of ini-
tial clustering center based on the traditional vocabula-
ry tree as follows;

Step 1. Select only one clustering center random-
ly.

Step 2. Compute D(x,K) , the minimum distance
between other point x and existing cluster centres.

Step 3. Add one new point as a clustering center.
Each point x is chosen with the probability proportional
to D’ (x,K) , as shown in

P(x € K) ~ minD*(x,K) (3)

Step 4. Repeat Steps 2 and 3 until % centres have
been chosen.

Distinet initial clustering centers could be found
by this method, which reduces the number of iterations
greatly and achieves good clustering performance.

2.2 Mobile tracking and registration

In most cases, the observer is far away from the
target buildings and the building surface can be ap-
proximated as a plane. With keypoint matching, we
can establish the homography between current frame
and keyframe according to

sm, = Hym, (4)
where m, is a feature point in the captured frame and
m,is the matching point in the keyframe. s is the scale
factor . The point correspondences are built as the
tracking initialization step through BRISK feature matc-
hing . Real-time performance is achieved by calculat-
ing the optical flow between successive frames. The
optical flow measurements are refined with tracking to
avoid the drift introduced by frame-to-frame feature
matching. An initial Hj is obtained with four matching
points. We select H, with the minimal back-projection
error d according to Eq. (4) as our homography.

The solution to Eq. (5) can provide a reasonable
estimate of the camera pose, yet typically leads to the
jitter problem, particularly noticeable when the camera
is fully or nearly stationary.

d= |m, -Hm| <q, (5)

In order to stabilize the solution, we use the pose
estimation results as initial data and perform some opti-
mizations, such as the L-M optimization method.
2.2.1 BRISK feature matching

BRISK feature is a kind of binary feature based on
AGAST feature detection and a BRIEF feature descrip-
tion. BRIEF can achieve scale invariant by building an
image pyramid. For BRIEF feature local binary sam-
pling is applied to generate binary descriptors, as
shown in Eq. (6). I(P],o;) is the gray value of the
sampling point by Gaussian smoothing.

b=l KB o) > KR (6)

otherwise
Hamming distance is used to measure the difference
among the feature descriptors. Calonder''® has indica-
ted the effectiveness of Hamming distance for classif-
ying pairs of points. The distribution of the distance for
non-matching points is Gaussian distribution and is
centred around half of the descriptor dimension. The
number of matching feature points can be controlled by

limiting the Hamming distance, as shown in

d(m,n) = ZmiC—Dni <gq (7)
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PROSAC'"'is used to exclude outliers for binary
descriptors after sorting the descriptors, as shown in

Fig. 2.

= Y -y
(b) Matching with outliers excluding
Fig.2 Excluding outliers with PROSAC

2.2.2 Optical flow tracking

Feature tracking can be considered a small-base-
line tracking problem as the transformation between two
consecutive image frames can be modelled using the
translational model. Widely used feature tracking
methods such as tracking by detection consume a lot of
time for mobile devices and may affect the real-time
performance. Computing the optical flow for the feature
points provides us a real-time algorithm of frame-to-
frame feature tracking, as expressed in Eq. (8). The
motion of pixels can be estimated by the spatial deriva-
tive (/,,1,) and the temporal derivative /, with a fixed
size window.

Lu+1lv+1 =0 (8)

With optical flow, we can speed up the computa-
tion of the camera pose, as shown in Fig. 3.

— > >

Fig.3 Optical flow speed up

2.3 Network transmission

Large-scale image recognition is very strong in de-
manding requirements for network transmission. System
fluency can be improved through minimizing the burden
of transmission.

In this paper, we design the two-way transmission
between the mobile phone client and the remote server
as shown in Fig. 4.

Descritpors

/ Compressior\
[

\ JPG_/

Compression

Fig.4 Network transmission

Query image is transmitted in the form of JPG
compression from a mobile device to the remote server.
At the same time, BRISK features are transmitted in
the form of Zip compression from the server to a mobile
device. Most smart phones support the output of JPG
image with different compression rates and are simple
to be realized. The size of image can be quickly re-
duced to 1/3 of original size without affecting image
quality. This kind of compression almost does not
effect on the image feature detection. We will test it in
our following experiments.

3 Experimental results

The system is tested on UKbench datasets and real
environments, as shown in Fig.5. The server is a high
performance workstation with Intel Core i7 Processor
and the mobile device is HTC 1.2GHz smart phone.

3G network is used for transmission.

UKbench Real Environment

Fig.5 UKbench datasets and real environment

3.1 Recognition performance

UKbench contains 2550 scenes and each scene
contains 4 different images, including different rotation
and lighting conditions as shown in Fig. 5. One of the 4
images is set as the training image and others as the
query images.

The clustering time of the selection method of ini-
tial clustering center is compared with random initial
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clustering center used in Ref. [ 1]. Clustering time is 4007 OBRISK & SURF
shown in Table 1. 350 |
300 |
Table 1  Cluster time (s)
250 f
Initial K=8, K=8, K=10, K=10, 2
Center L=4 L=6 L=4 .=6 §200-
Nister 2513.21  2913.41  3818.56 6179.13 E 150}
Our 1336.16  1357.40  2028.83 2810.76 100 b
.. . . 50 i
The recognition accuracy is compared with that
obtained by Schindler'” and Baatz'®'. In order to ac- 0 Detect Descript " Mach  PROSAC

curately verify the clustering method, the same re-
ranking method is employed to Baatz’ s and the recog-
nition rate of top-10 mAP(% ) is counted, as shown in
Table 2. Experiment results show that our selection al-
gorithm of initial clustering center can save the cluste-

ring time and enhance the recognition rate.

Table 2 Recognition rate (% )

K=8, K=8, K=10, K=1I0,
Method 1.4 L=6 1.4 1L=6
Schindler 73.13 80.26 78.53 81.79
Baatz 76.16  84.13  82.64  85.13
Our 79.06  86.55  84.58  88.96

Our recognition efficiency is also tested online.
The recognition can be divided into four parts: feature
detection of query image, bag of feature vector quanti-
zation, searching the inverted file of vocabulary tree
and re-rank of retrieval short-lists. Time cost of each
part is provided in Table 3.

Table 3 Online Recognition (ms)
Query BOW Search Rerank Total
103.1 0.7 6.3 65.1 175.2

3.2 Mobile tracking performance

The SURF feature is widely used in real-time
tracking. The BIRSK-based tracking strategy is com-
pared with the SURF-based tracking strategy and the
time cost of different methods is counted, as shown in
Fig. 6.

The BRISK feature is faster than SURF and its to-
tal time cost of computing homography is about 100ms
per frame. For most applications, ten frames per sec-
ond cannot satisfy users. The optical flow method is
used for real time tracking purpose.

We set the BRISK feature detection and matching
as the initial step of mobile tracking and introduced op-
tical flow to track the following frames. As the drift of

Fig.6 Comparison of time cost between different features

tracking points and outliers excluding, the tracking
points will become less and less with time, as shown in
Fig.7, where the number of tracking points and time
cost of 80 frames are recorded.

150
Tracking points

5 100
¥l
g
=
=
£

& 50

0 . . .
0 20 40 60 80

Frame list

Fig.7 Optical tracking points changes per frame

While the tracking points are too low, a re-initial-
ization thread is conducted, and the time cost of optical
flow is lower than that of initial proceeding. We count
the time cost of optical flow computing and PROSAC
per frame in Fig.8. In most cases, frame rate can
reach 25 or more.

60

—&— Optical flow
50 —A—— PROSAC ]

40

30

Time (ms)

20

10

0 20 40 60 80
Frame list

Fig.8 Optical flow time cost changes per frame
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3.3 JPG compression

The influence of JPG compression on recognition
rate is tested. As shown in Fig. 9, the file size of test-
ed image quickly decreases with JPG compression rate.
By contrast, the recognition rate of vocabulary tree de-
creases slowly. File size will be reduced to 1/3 of orig-
inal size when the compression parameter is set to 50.
The recognition rate is almost constant, as shown in
Fig. 10. Experiment results show that, JPG compres-
sion does not show much adverse effect within some
compression rate. We can transmit JPEG-compression
images without affecting recognition rate.

250

200 1

150

File size (KB)

0 20 40 60 80 100
JPG compression rate

Fig.9 JPG compression Effect on file size

Recognition rate changes

L T

100

B (=) [
(=} (=} (=}

Voc recognition rate (%)

(]
(=}

0 . . . .
0 20 40 60 80 100

JPG compression rate

Fig.10 JPG compression Effect on recognition

3.4 Applied system

The system is also tested in the outdoor environ-
ment, as shown in Fig. 11. Training images are col-
lected from the Internet and real environment. Vocabu-
lary tree is built and augmented data including virtual
signs and 3D objects are stored in the database. 3G
network is used for transmission. Real-time perform-
ance of the whole system can be seen in Table 4. Ini-
tialization including online recognition requires about

300 ms. For large-scale city guide, the speed can be

accepted. Initial step only needs to be performed once
before online tracking. During the online tracking
stage, optical flow computing and 3D rendering may
take less than 50ms in total. With more than 20 frames
per second, we can realize a smooth tracking interface.

—— —

FRERERT19594FiRTE , 19605 i L , IR+ | %
1218, FESH14E, EEREERNEERSTE

* OMEMET, 19635 SRRt BOSEREFHR , TF |
#B9310/= , 19645 MHTITL , 196655 ML,

Fig.11 Outdoor guide samples in the school

Table 4 Realtime performance (ms)

3G Online Initial Optical 3D
Transmission Recognition Tracking Flow Rendering
6.7 168.3 96.3 32.3 15.1

4  Conclusions

Experiment results show that the C/S system
works well under complex outdoor environment. With
the selection of initial clustering centers, vocabulary
tree can be quickly built and good recognition rate can
be reached. BRISK feature and optical flow running in
parallel allow robust and real-time tracking. However,
many problems still exist. The computing power of
smart phones is still lower than that of PC. The smart-
phones have its advantage of the built-in sensors. We
can narrow the scope of image retrieval with GPS and
realize more accurate tracking with inertial sensors.
Combining vision-based methods with hardware, we
can realize robust and real-time augmented reality.
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