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Abstract
In this paper, by utilizing the angle of arrivals ( AOAs) and imprecise positions of the sensors,

a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is pro-

posed. Conventional source localization algorithms, like Gauss-Newton algorithm and Conjugate gra-

dient algorithm are subjected to the problems of local minima and good initial guess. This paper

presents a new optimization technique to find the descent directions to avoid divergence, and a trust

region method is introduced to accelerate the convergence rate. Compared with conventional meth-

ods, the new algorithm offers increased stability and is more robust, allowing for stronger non-linear-

ity and wider convergence field to be identified. Simulation results demonstrate that the proposed al-

gorithm improves the typical methods in both speed and robustness, and is able to avoid local minima.
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0 Introduction

Source localization by using the angle-of-arrivals
(AOAs) measurements has a wide application in areas
such as localization of mobile phones, radar, sonar and
electronic warfare. Various algorithms have been pro-

13 .
131 Previous

posed to estimate the source location
methods assume that the sensor positions are known ex-
actly, which may not be true in practice. Recently,
Ho, et al'*’ proposed a closed-form solution to estimate
the source location using time difference of arrival
(TDOA) measurements when the sensor location errors
are presented. Lu, et al”®’ employed the Taylor-series
technique using AOAs measurements to find the source
location when sensor positions have errors, which indi-
cates that these methods improve the source location
accuracy significantly when sensor position errors are
taken into account'®’.

It requires solving a set of nonlinear observe equa-
tions to find the position of an emitter by using AOAs
measurements. The existing solutions to this problem
can be loosely divided into two categories: Some meth-
ods are nonlinear least-squares ( NLS) estimators > ,
the others are closed-form solutions”’. Both of these

methods are able to reach the CRLB accuracy. The

closed-form solutions are obtained from linearization of
the set of nonlinear equations by transforming the un-

known emitter location vector®’.

However, the “lin-
earization” process may depend on the special position
parameters, which is not an all-purpose method. The
NLS estimator is a usual method to solve the sets of
nonlinear equations but requires a good initial guess.
The Gaussian-Newton method"' is the most common
NLS estimator employed to estimate the emitter posi-
tion. Unfortunately, there exists three problems in the
Gaussian-Newton method for emitter localization: (1)
the Gauss-Newton method fails for strongly non-linear
equation problems; (2) it requires a good initial posi-
tion guess, which is used to avoid local minima and di-
vergence; (3) the convergence of the iterative process
is not guaranteed in practice. In Ref. [7], a technique
based on grid-search was developed to find the suitable
initial guess, however, the grid-search computation is
expensive when the emitter source is unknown.

The Levenberg-Margquardt (LM ) algorithm is an
effective nonlinear least-squares method that combines
the robustness of steepest descent method and the com-
putational efficiency of the Gauss-Newton method.
Nonlinear least squares problems have been successful-
ly solved by the various implementations of the LM
method'®"®’. The LM method is much less dependent
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on the accuracy of the initial guess and more robust
than previous methods, thus the stability and efficiency
of nonlinear localization estimation can be notably im-
proved. However, compared with other iterated least
square methods, the standard LM method may suffer
local minima and slower convergence problems.

This paper presents an accelerated Levenberg-
Marquardt method for the application of AOAs localiza-
tion. It works with combination of the Gauss-Newton
and the LM directions so as to force the several nonlin-
ear localization equations to converge no matter whether
the initial guess is at the solution’ s neighborhood or
not. A radius of trust region is used to control the size
of step which is capable of accelerating the conver-
gence rate. Moreover, a stopping criterion is construc-
ted to indicate whether the iteration converges to the
global minimal value. With the use of the LM algo-
rithm and the trust regions, the method converges from
a wider range of parameters without declining the esti-
mation precision.

This paper is organized as follows: Section 1 pres-
ents the measurement model for passive location in the
presence of sensor location errors. In Section 2, the
modified Levenberg-Margquardt method for source lo-
calization is developed. Simulations are included in
Section 3 to evaluate the estimator performance by com-
paring it with Gauss-Newton and standard LM meth-
ods. Finally, the conclusions are drawn in Section 4.

1 AOAs location model

Fig. 1 gives an illustration of a typical operational
scenario where the AOAs-based geolocation technique
is used. Here 2-D source localization is considered
with the sensors have random position errors. Lets;, =
(%, v,]",i=1,2,---,Mbe the available sensor loca-
tions with position error. The true sensor positions are

o

st =[5, 97] T , and the true source position is denoted
asu’ = [«",y"]", i =1,2,---,M. The AOAs meas-

urements between the source and sensor 7 is

B =1[B.,, Bul"

o o0 o o
= [tanfl(yiu yi),---,tanfl(yiu yfl)]T +n
x” - x’ - xy

(1)
The AOA measurement noise is denoted as n =
.

[AB,,AB,, -+ ,AB, ], nis assumed to be a zero mean
Gaussian vector with covariance matrix E[nn'] = Q,.
The available sensor positions with unknown noise

can be represented as;

T T o o T

s = [s17'”’se‘w:| = [S]7”.’se‘l/l:| +m (2)

where the covariance matrix for vector m is Q, =

m

E(mm'). m = [As,;As,;--,As, | is the vector of
sensor position errors, and it is assumed to be inde-

pendent of the measurement noise n.

u°

Fig.1 Two-dimensional AOA emitter localization

geometry with i receviers

Letp = [B", s']" represent the vector of the
AOA measurements and available sensor positions, w
=[(u)", (s))",-++, (s3)"]" be the unknown pa-
rameter vector of the true source and sensor locations,
ande = [n', m"]" be the vector of measurement error
and sensor position error. With the AoAs measure-
ments in Eq. (1) and sensor positions in Eq. (2), the
mathematical problem of estimating w can be expressed
as the following algebraic relation ;

p=f(w) +e (3)
the measurement error covariance matrix Z s given
as;

[ o,

= E(ee") = 4
> = E(ee") 0] (4)

The nonlinear least squares cost function for esti-
mating the unknown parameter vector w in the azimuth
plane is given as;.

W, = argmindys = argmin | p - ((w) |}

(5)

where | « ||, = /()T Z 71( - ) denotes a weighted

norm, with the error covariance matrix Z

2  The accelerated Levenberg-Marquardt
location algorithm

2.1 Conventional methods

The conventional method needs the initial guess
w, = [u; , s;] " closing to the true parameter vector w.
For small 8w, , expand f(w) around w, through Taylor
series and keep only up to the first order term

flw) = f(w) L., + Fow, (6)
where F is a matrix equal to the partial derivative of
f(w) with respect to w. Inserting Eq. (6) in Eq. (5),
the output of cost function is

Jas=@~fw)1, ~Fow)"S "(p-f(w)1,,
- Féw,) (7)
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Leth =p - f(w) |, , we can express Eq. (7) as
Jus = (h - Fﬁwg)vr Z B (h - Féw,)
k'S Th-206w)"F'> 'k

+ (8w)"F"S "F(éw,) (8)

The Gauss-Newton step 6w, minimizes J s, and it

is obvious that the gradient Jy, and the Hessian of J

are derived as:

oS is T -1 AT -1
a(ow,) =F'> F(éw,) -2F' > h,
azjms T -1

——— =F F 9
8(8wg)2 Z (9)

where F is derived from Eq. (6), Jy is independent
of w,. If F has full rank, Jy is positive definite.
From Ref. [ 11], this implies that Jys has a unique
minimizer, which can be found by solving

dw, = (F'S "F)'F'S 'h (10)

To obtain the solution, it is needed to compute
6w, by Eq. (10) at each iteration, replace

‘:’kn = ‘:’k +a(6wg) (11)

The classical Gauss-Newton method uses a = 1 in
all steps. The method with line search can be shown to
have guaranteed convergence, provided that

(1) {wl f(w) < f(w,) 1} is bounded,

(2) the Jacobian matrix F has full rank in all
steps.

The standard Gauss-Newton scheme has several
hidden drawbacks. Firstly, Because the function f(w)
is nonlinear and the relativity among the portions of
f(w) always exists, it may happen that the gradient
matrix in Eq. (10) at some test points degenerates.
When (F" Z _IF) s singular, it jumps out of the it-
eration without reaching the minimum. Secondly, the
Gauss-Newton method may diverge or converge to a
saddle point or a point of local minimum. This would
require good initial guesses for the parameters which

are in practice not available.

2.2 Accelerated LM (A-LM) algorithm

The LM algorithm is an iterative technique that lo-
cates the minimum of a multivariate function expressed
as the sum of squares of non-linear real-valued func-
tions. It gives a good compromise between the speed of
the Newton algorithm and the stability of the steepest
descent method"®’. With the use of a damped parame-
ter u, the step 6w, is defined by the following modifica-
tion to Eq. (10),

(F'S "'F +ul)éw, = 2F"S "'k (12)
And the step 8w, in each step can be calculated as

dw, =2(F'S "Fa+u)'F'S 'h (13)
Thus the solution for the each step is
{ Wi = W, +0W,

ow, =2(F'S "FauD)'F'S "h
From Eq. (14), the damping parameter w influences

(14)

both the direction and the size of the step.
2.2.1

It is known that the Gauss-Newton method is good

comments on the parameter u

at the final stage of the minimization process, but it is
better to use the gradient method for the first iterations.
The damping parameter  has several effects:

(1) For ally > 0 the coefficient matrix is positive
definite, and this ensures that the inverse matrix

(F" Z F 4+ wl) ™ exists.
(2) For large values of u we get

ow, =~ F'S n (15)
M

which is a short step in the steepest descent direc-
tion. It is good if the current iteration is far from the
solution.

(3) Ifpis very small, then 6w, =~ éw,, which is
a good step in the final stages of the iteration, where
the w, is close to the real position w.

2.2.2

It is necessary to control the step size carefully

the control of optimal iteration step

once the direction of the correction vector has been es-
tablished. In view of LM method, the LM method leads
to slower convergence than the Gauss-Newton. The
trust region could be used to find an optimal approxi-
mate step which is a combination of Gauss-Newton step
and LM step.

There are two candidates for the step to take from
the current point w,; the LM step 8w, and the Gauss-
Newton step 6w,. When the trust region has radius A,
the strategy for choosing the step 8w, can be illustrated
in Fig. 2.

Fig.2 The radius of trust region and the size of step
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S0 _{ ow,, low, || <A
@ low, +B x (8w, —6w,), |éw, | >A
(16)

The parameter 8 in Eq. (16) is unknown, which
is used to control the iterative steps. We consider the
iterative step is smaller than the trust region radius A,
then the optimal size of the step || 6w, || = A. Thus it
is obvious that the parameter B satisfy the following re-
lation

1(B)

| 6w, + (8w, —éw,) ||* - A®
= || (6w, —w,) |°B" +2(8w))’

(8w, —6w)B + ||éw, | -A* =0
(17)

The root for the second degree polynomial
Eq. (17) exists, because f(0) = ||éw,| -A* <0
andf(1) = | 8w, | -A® >0. Thus, Eq. (17) has
one negative root and one root in [0,1]. The most ac-
curate computation of 8 is given by
B =

(=c+sqri(c® + | (6w, —éw,) | 2
(A% = 16w, )/ || (8w, =6w) ||* ¢ <O
(& = ow, 1)/ (e +sqri(e + | (w, —aw,) |°
(A = [[éw, 1)) c>0
(18)
where ¢ = (6w,)vlv(8wg -ow,).

During iteration the radius A of trust region is con-
trolled by the gain ratio p, which can represent the
quality of model

_ F(w,) - F(w, +6wgl>

Pm L) - Lw,)

where F(w) = % | f(w) || *, the denominator L(&w)

(19)

= % I f(w) | w, T FOW || ? is the linear model from

Eq. (6). Thus it is easy to get that a large value of p
indicates that the linear model is good, and we can in-
crease A so that the next iteration step is closer to the
Gauss-Newton step. If p is small, then the L(éw) is a
poor approximation, and we should decrease A with the
twofold aim of getting closer to the LM direction and re-
ducing the step length.

Corresponding to the two cases in Eq. (16), it is
easy to compute the denominator in Eq. (19) ;
L(0) - L(éw,)

= 0.5 f(w,) || * = 0.5 f(w,) +Féw, |

0.5L/ W) f(we) = (f(we) + Fow,)" (f(w,)
+ Féw,) |
- 6w F'f(w,) - 0.5(6w,F'Féw,) (20)
Note that the 8w, is the iteration step at time k + 1,

while w, is the new estimation vector at time k. The

gain ratio p is computed at each step to control the size
of radius A.
2.2.3

For strongly non-linear problems, the cost func-

the stop criterion for the global minima

tion Eq. (5) may have multiple minima. In such ca-
ses, the Newton type algorithms would have the well-
known problem of local convergence. An effective stop-
ping criterion should help the reflection of a global
minimum. The conventional stopping criterion pro-
posed in Ref. [3] ||éw | < &orJy < & may con-
verge to local minima.

To avoid local minima, a combination of LM
method and a random search based on properties of the
AOAs localization is introduced. The global minimum
must satisfy the following two conditions: (1) the val-
ue of y is almost O if w matches the minimum. In the
section 2.2. 1 we have proved that when the iteration
value is near the minimum, the damped parameter y —
0; (2) the function E(w) = e'e is sufficiently small
near the true source localization. From Eq. (3) we can
see that e =p — f(w), where p is the measurement
vector and f(w) is the estimation vector. When the es-
timates are near the true source location, the e'e
should be very small because the formation of observa-
tion error is small, and sensor position error is also
small. This can be proved by simulation (Fig.4) in
section 4.

In order not to disturb the line search method from
converging to the desired solution by random jumps,
those jumps are only allowed if the absolute values
could not satisfy the condition (1) and condition (2)
simultaneously. Now we can formulate our stopping cri-
terion and random jump when the value of y has to be
smaller than the bound w;, but the E(w) is larger than
the lower bound E

forstepk =1 to ndo

min ¢

Wiy = W, +ow,;

fp < o, andE({‘\)kH) > K, (21)
Thenw,,, = w,,, = w,,, + rand(w);

end if

end for

rand(w) is the random variables uniformly distributed
over the parameter range of w.

In Table 1, the updating damping factor y and the
trust region radius A are both controlled by the gain ra-
tio p. A small value of p indicates that the iterative step
is not good and the damping factor u should increase
and the trust region radius A should decrease. If the p
is large, which means the iterative step is a good ap-
proximation to the model, and we should decrease u
and increase A. The thresholds of gain ratio are set top
= 0. 25 orp = 0. 75 because the updating of parameters
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change across the thresholds 0.25 and 0.75 is slightly

11
fluctuant, and we can slow down convergence'"’.

Table 1

Input: the AOA measurements and available sensor positions

Algortihme for accelated levenberg-marquardt method

vectorp = [B", s"]". A random initial parameter estimate w,
e R, the stopping value g, = &, = 107, the damping parame-
terpw: = 7 x max|{F'F} , the radius of trust region A = A,.
Output; a vector w, € R minimizing Eq. (4).
Begin: stop: = ( | F'>Y 'h| . <e&)
while (not stop) and (£ < k)
k: =k+1;h=p—-f(w)l

s
Slove (F'> "'F +pul)éw, = 2F' S "'h;
Slove (F"Y "Faw, =2F" Y "h;
Compute 8w, from Eq. (15) ;

it éw || <e([w, | +e)
Stop: = true;
else
};new = ‘;k +5Wg,;
CIFEO) L = [ FOW +8w,) ||
L(0) - L(éw,) ’
ifp >0.75
‘;’kn = Woews

stop: = (| F'Y || . <e0)s
we = xmax{1/3,1-(2 -1)*}; v =2;
A = max{A,3 x || ow, | |
else if0 < p < 0.25
‘;’I:H = Woews
stop: = (A<e, (| ‘:’kn | +&));
wi =pxmax{1/3,1 = (20 -1)*}; v: =2;
A =A/2;
else
MH: = Xv; v =2 X
A =A72;
end if
E(wkH) = (P _f(wk+1))T(p _f(wk+1));
ifu < s, and E( ‘;}kﬂ) > E
Then w,., = w,,, +rand(w);
end if
end if

end while

3 Simulation results

This section provides a performance comparison of
the proposed method with the Gauss-Newton method
and the CRLB in Ref. [3]. The sensor positions used
for simulation are [ — 650m, - 493m]", [444m,
562m]", [860m, -843m]", [ —=515m, 191m]",
[222m, -150m]", [180m, 340m]". The AOA noi-
ses are independent of the sensor position noise. The
AOA noise power o> = (0.1°)? and the sensor posi-

tions is o, X R, where o, varies from 10 ~* to 10°m”, R
= diag[1,1,2,2,10,10,40,40,20,20,100,100].

Fig. 3(a) and (b) show the convergence per-
formance of the logarithms over a range of initial gues-
ses when the source location is in the near-field [ 650,
600]. Black areas in Fig.3 represent initial guesses
that do not converge to the global minimum, while the
light colored regions show areas that converged. It
could be concluded that Gauss-Newton is not a reliable
method for AOAs localization. There are about 58. 5%
of initial guesses converged from Guass-Newton meth-
od, while the proposed algorithm is 99.8% . Fig.3(c¢)
and (d) are source location in the far-field [ 1500
2500]. Tt is easy to find that the convergence region of
Gauss-Newton is 55. 7% , while the proposed method is
98.02% .

Fig.4 shows a contour plot of cost function Jy
evaluated in a large region surrounding the true emitter
position, which is located at [ 650; 600 ]. According
to Fig. 4(a), the Jy s is nearly flat in a large neighbor-
hood of the true source location, which presents con-
vergence challenges for iterative methods. In order to
prevent converging to the local minimum, the stopping
criterion must be very strict. From Fig.4(b), it can
be seen that loglO(Jy,s) is sufficiently small when
reaching the global minimum [ 650; 600 ]. This prop-
erty of AOAs localization could be used to indicate
whether the iteration steps reach the global or local
minimum.

Fig.5 illustrates the test cases when the initial es-
timates are good or poor. In the good initial situation
(Figs(a) and (c)), all algorithms converge to the
source solution within a few steps when choosing the
same stopping criterion. The convergence process of
the standard LM method is slower than other algo-
rithms, and the accelerated LM method needs the same
steps as the Gauss-Newton method when the radius r =
100. In poor initial case (Figs(b) and (d)), the
conventional Gauss-Newton algorithm oscillates at the
beginning and divergences at the end, while the accel-
erated LM still performs well when r =100. It is easy
to get that the new algorithm has an increased conver-
gence range and can cope with stronger non-linearity
but requires less iteration steps than the standard LM
and the Guass-Newton method.

Fig. 6 compares the MSE of the source position of
the standard LM method, the proposed method and the
CRLB. The CRLB is shown by the solid line, the
square symbol is the MSE of the source location for
standard LM method, and the cross symbol is for the
accelerated LM method. It can be seen from the figure

that both of the standard LM and the accelerated LM
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method reach the CRLB for the source position. Actu-
ally, these iterative methods such as Gauss-Newton

1000

200 400 600 800

200 -9
400
600 J&

800 ..

1000
(a) Gauss-Newton method ,near-field(650,600)

100 600 1100 1600 2100 2600

(c) Gauss-Newton method, far-field (1800, 2500)

method and LM method have the same location accura-
cy when converging to the global minima.

0 200 400 600 800 1000
200 = 7
400

600

800~

1000 -
(b) the proposed method, near-field(650,600)

100 600 1100 1600 2100 2600
1000 = s ’ ; S—

1500 1

2500

3000 -

3500 -

(d) the proposed method, far-field (1800, 2500)

Fig.3 Plot of initial guesses which converge for Gauss-Newton and the proposed method

logl0(J,, )

070()8009001000
o 10020 X(m)

(a) Contour plot of J ¢ in 3-D region

43004005005
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900} N o
800 313 o> |
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600 313 3059—'—’—"33059‘ il
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400 | o 3 \ |
7 9744~
W o e ]
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(b) Contour plot of J, ¢ in 2-D region

Fig.4 Contour plot of Jy,5 in Eq. (7) in large region surrounding true emitter position [ 650, 600 ]



280

HIGH TECHNOLOGY LETTERSIVol. 20 No.31Sep. 2014

107
R ARG TG TR N TG Y TS e
106 L 4 By | —— Gauss-Newton method
N | —%— Standard LM method
—8— Accelerated LM method, =10
10°L \| —*— Accelerated LM method, r=20
—6— Accel d LM method, r=10!
., 1ot 3
z
S ]
10* L 1
10' 1
10° I . i J
0 10 20 30 40 50 60 70
Steps
(b) near-field[650; 600], poor initial [10;10]
108
—¥— Gauss-Newton method
—— Standard LM method
107 —8— Accelerated LM, =10 ||
—%— Accelerated LM, r=20
—e—A LM, r=100
106}
10°
g
S 104
10°}
10?

0 5 1‘0 1I5 - 20 2IS 3I0 35
Steps
(d) far-field[1800, 2500], poor initial [900;250]

Fig.5 Comparison of iteration convergence for AoAs localization
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Fig.6 Accuracy of source location estimates
with o, varying from 0.05° to 0.5°

4 Conclusion

This paper presents a modified LM algorithm for
the source localization. The method is suited for pas-
sive geolocation with AOAs measurement errors and
sensor position errors, but not requires good prior
knowledge of the emitter location. In order to increase
the convergence rate, the trust region method is pro-

posed to optimize the iteration procedure. Simulation
results show that the algorithm converges to the global
minimum from a wider initial guess, and the number of
iteration steps is small.
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