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Abstract

Target tracking in wireless sensor network usually schedules a subset of sensor nodes to consti-
tute a tasking cluster to collaboratively track a target. For the goals of saving energy consumption,
prolonging network lifetime and improving tracking accuracy, sensor node scheduling for target
tracking is indeed a multi-objective optimization problem. In this paper, a multi-objective optimiza-
tion sensor node scheduling algorithm is proposed. It employs the unscented Kalman filtering algo-
rithm for target state estimation and establishes tracking accuracy index, predicts the energy con-
sumption of candidate sensor nodes, analyzes the relationship between network lifetime and remai-
ning energy balance so as to construct energy efficiency index. Simulation results show that, com-
pared with the existing sensor node scheduling, our proposed algorithm can achieve superior tracking

accuracy and energy efficiency.
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0 Introduction

Wireless sensor network ( WSN) is a multi-hop
network formed by a large number of miniature, inex-
pensive, and low-power sensor nodes which are de-
ployed in or around the monitoring area via wireless
communication''’. WSN has developed rapidly in re-
cent years and been applied gradually in military and
civilian fields'?'. Target tracking, as a basic and typi-
cal application of WSN, has always received extensive
attention.

Due to limited power, computation and communi-
cation, target tracking in WSN must rely on sensor
node management to achieve superior performance in
terms of energy efficiency, network lifetime, tracking
accuracy, etc. Hintz first applied an information theory
to sensor management in Ref. [3]. Subsequently infor-
mation utility'*’ | information-driven querying'’’, en-
tropy-based heuristic approach'®’ etc. are successively
introduced into the sensor node management in WSN.

It is observed that a small number of sensor nodes
are sufficient to achieve desired tracking accuracy.
Ref. [ 7] studies how to choose a certain amount of

nodes so as to minimize the error in estimating the posi-
tion of a target. It focuses on improving the tracking
performance but neglects energy consumption. An en-
ergy-efficient multi-sensor scheduling scheme based on
calculated target detection probabilities is developed in
Ref. [8]. The scheme doesn’t deal with network life-
work and only satisfies a threshold of tracking accura-
cy.

In order to maximize the network lifetime, the re-
maining energy after tracking at each time step should
be balanced so that no sensor would die of premature
energy depletion. Therefore, the network lifetime can
be prolonged from the perspective of remaining energy
balance. Ref. [9] investigates the maximization of the
coverage time for a clustered WSN by optimal balan-
cing of power consumption among cluster heads.
Ref. [10] builds a cluster of tasking nodes according
to the pre-specified tracking accuracy and selects the
node with the greatest remaining energy as the cluster
head aiming at energy balance within the cluster. How-
ever, not only the node inside cluster but also the ones
waken but not scheduled and the cluster head at previ-
ous time step should be also involved.

To overcome the limitations of existing work, the
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paper develops a multi-objective optimization sensor
node scheduling algorithm aiming at optimal tradeoff
among energy consumption, network lifetime and track-
ing accuracy. With this algorithm, cluster head and
members are determined according to the multi-objec-
tive optimization function proposed in this paper.

1 Sensor node scheduling for target track-
ing

It is assumed that every sensor node is equipped
with only one sensor and keeps the location information
of its neighboring nodes. They are normally in sleeping
mode and will be woken once triggered.

The scenario of target tracking in WSN is shown in
Fig. 1. When a target moves randomly in the monito-
ring area, at each time step, a subset of sensor nodes
from the set of woken nodes are scheduled to constitute
a tasking cluster and sense the target collaboratively. A
tasking cluster consists of a cluster head (CH) and
several cluster members (CMs). Under this configura-
tion, each CM senses data of the target and transmits it
to the CH for further processing. The CH is responsible
for estimating the target position and error based on the
sensing data, waking all the nodes in the sensing range
for the predicted target, selecting previously the CH
and CMs at next time step, and then transmitting the
prediction state and error to the next CH.

O@0® Sensor o
@  Cluster head (5)
®  Cluster member
A Target
~—— Target trajectory

Fig.1 Target tracking scenario
2 UKF algorithm and tracking accuracy

In this paper, a distributed single-target tracking
problem is considered and the UKF algorithm is used to
estimate target state and tracking error because of its
superior performance on nonlinear estimation.

The discrete target motion model in this paper is
assumed as

Xiw = F X + G W, (1)
where X, is the state vector of the target at the k" time
step, X, = [xc,k s Xoks Yers Yook ] ! , where Xek and Ye,k
are x- and y-coordinates of the target, x,, and y, , are

the velocities of the target along x- and y-directions at
the k" time step, W, is the white Gaussian process
noise with covariance matrix Q, and F, and G, are the
transition matrices of target state and process noise re-

spectively, beside

1 ¢ 00 /2 0

01 0 O t 0
F,_ = , Gy = 2

0 0 1 ¢ 0 /2

0 0 0 1 0 t

where ¢ is the sampling interval between two successive
time steps.

The measurement of tasking node s, at " time step
is formulated as following

zf,{ = hi(*X/{) +”;f (2)

where h'( ) is the measurement function of s, with

i i 2 i 2 i i .
h'(X,) = (x _xc,k) + (y, _yc,k> , (w,y,) is
the coordinate of s, at k" time step; v’ is the zero-mean

Gaussian measurement noise with variance o, which
are decided by the characteristics of the sensor node
and the environment, and independent of W,. Then
measurement model of the network is given by
h' (X)) Ullr
W (X,) 4 v,

Z, = H(X,) +V, = (3)

wr xS Lo

2 LT -
y zk‘] is the measurement vec-

where Z, = [z, 2z, -
tor consisting of the measurements of L, tasking nodes.
H(-) and V denote respectively the vector forms of
{R' ()}, and {v'}*,. The covariance matrix R, of
measurement noise V, is represented as

R, = diag (o7, o3, ---,a'ik) (4)

Based on the motion model and measurement
model,, UKF algorithm is depicted as follows .

1) State prediction

Xpon = Fo Xy, (5)
Py = kaxx,klkaT + GkaGkT (6)
2) Sigma points selection
X(),k+]\k = Xiuins =0 (7)

Xigoe = Xy + al /anx,kH\k)l’

I'=12,--,n (8)

Xz,kmk = Xoour — a( /anx,kH\k)l,

l=n+1,-2n (9)
where « is an adjusting parameter, and ( /n Isﬂ‘k”'k ),

denotes the [ " column of the matrix square root.

3) Measurement prediction
2n 2n

Ly = ;)nzzl,mnk = [Z()an<Xl,k+l\k) (10)
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2n

Px,k+1|k = Z nl(Zl,k+1|k - Zk+1\k) (Zl,k+llk - kak)T
=0

+ R, (11)
2n R N
sz,k+1|k = Z nl(Xl,k+1|k - XIH—Hk) (Zl,k+llk - Zk+l|k)T
=0
(12)
1 . 1 .
Wheren, ZI—E,lfl 20;77[ Zm, 1fl=1,2,

-,2n.

4) State update

After the real measurement Z,,, for the target is
obtained, the following update could be implemented

Xevinr = X + Kt (Z4 = Z3000) (13)
P = Poonn = Ko P (14)
K. = sz,k+l\k<Pzz,k+l|k) - (15)
In this paper the tracking accuracy index is estab-

lished with the trace of state covariance matrix

Px.r,k+l\k+l :

&, = trace( P, 4i1401) (16)
where function trace( - ) is to get the trace of a ma-
trix.

3 Multi-objective optimization sensor node
scheduling scheme

The lifespan in this paper is defined as the dura-
tion from the beginning of tracking process to the ap-
pearance of a first node which doesn’ t keep sufficient
energy to perform a task.

Network lifetime relies heavily on the lifetime of
And the li-

fetime of a sensor node mainly depends on two factors;

each node that constitutes the network!"’.

how much energy it consumes over time, i. e. energy
consumption quantity; and how much energy is availa-
ble for future use, i. e. remaining energy. In this pa-
per, two factors are depicted synthetically using a ter-
minology of energy efficiency. If a target frequently
maneuvers in a certain region of interest, it might
cause a fact that the energy of some sensor nodes in the
network is easier to deplete, which results in network
disconnection, energy hole, information loss, and ulti-
mately premature ending of the network lifespan''”’.
However, under the same quantity of energy consump-
tion, it would prolong the network lifetime observably
to keep the remaining energy of each sensor node bal-
ance.

It is assumed that energy consumption by s, for
sensing data of b bits is £, (s;) = e,b and that for trans-
mitting b bits to 5; 1s E,(si,sj) = [e, + e, Dis"(s;,

s;) 1b, where e, and e, are determined by the specifica-

tions of transmitter s;, Dis( + , + ) is the Euclidean

distance function and v depends on the channel charac-
teristic. Energy for receiving data of b bits by s; is £, (s;)
=eb".

In order to build the next tasking cluster, it is
needed to predict the energy consumption and remai-
ning energy of each candidate node as well as the error
covariance in UKF. The specific operations are de-
scribed as follows:

1) Based on the state prediction estimation X,,,,, ,
all the nodes in the sensing range for predicted target
position constitute a candidate node set

Gy = %g;m | Dis(giH,ka,‘,) = T}NM (17)

i=1
where r is the sensing radius of a sensor node; and NV, ,,
is the number of candidate nodes.

2) Sensor node scheduling is practically to search
an optimal combination C,,, = {¢/,, }[’Z' , e € G,
in set G,,,. Supposing that CH,, is the cluster head in
candidate cluster C,,, , the set of cluster members can
be represented as:

CM];+1 = {C;wl - CHA

b+1

b= feml, " (18)

3) Energy cost by current cluster head CH, is for
transmitting predicted target state and error covariance
to the candidate cluster head at the next time step.

Eoy, = e, +e,Dis"(CH,, CH,,)]b,  (19)
where b, is the bit number of the data transmitted from
CH,.

4) Every cluster member needs to sense data of b,
bits about the target and transmit it to its cluster head.
So energy consumption by each candidate cluster mem-
ber is predicated as

E '(; = esb2 + [et ey Disv(cmzﬂ ’ CH1;+1)Jb2

sl
(20)
5) Energy consumption by candidate cluster head
CH,,, includes: receiving the predicted target state and
error covariance sent from current cluster head CH,;
sensing the data about the target; and receiving the

sensing data from all candidate cluster members.
Liyr-1

=eb, +eb, + Z e,b, (21)

j=1

ECH}’MI

6) Predict total energy consumption in tasking re-
gion ;
Lps-1

Ek+l = ECHk + Z E(‘I?LZ+
j=1

7) Predict the remaining energy of different tas-

+ By (22)

king node;
RCHk,k+I = RCHk,k - ECHk (23)
R

mi = Ry o —Ey
Lmk+l’h+1 cmk”,h emf 0

j = 1,2a“"Lk+1 -1 (24)
= RCH;-H«’C - ECH;H (25)

RCH,’Hl,kH
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8) Compute the standard deviation of remaining

energy of all tasking nodes
Lis1

LH;LA+19 U R k+l}) (26)

It is clear that the smaller 0., is, the better the

[ Std({

energy balance level is.

9) The energy efficiency index is constructed by
weighing energy consumption quantity and remaining
energy balance degree.

D, =gk, + (1 -g)o, (27)
where ¢, € [0,1] is a weight parameter used to
tradeoff energy consumption quantity and energy bal-
ance degree.

The design objectives of sensor node scheduling
scheme are low energy consumption, balanced remai-
ning energy and high tracking accuracy, which is in-
deed a multi-objective optimization problem and could
be formulated as follows:

mind®,
mind, (28)
sito Rey, g s Rc,'f+l,k+1 =0

To ensure current cluster head and all candidate
nodes have enough energy to complete next tasks,
constraint is made that their remaining energy must be
larger than or equal to 8, whose value is computed ac-
cording to the required energy for performing a task.

By transforming the above multi-objective optimi-
zation problem to a single-objective optimization prob-
lem, a multi-objective optimization function for cluster
node selection is formulated as following

D =50 +(1-¢)yD, (29)
where £, € [0,1] is a weight parameter, and vy is a
matching factor that makes the value of energy efficien-
cy index have the same order of magnitude with track-
ing accuracy index. The candidate cluster enabling @
minimal is determined to be the real tasking cluster,
and the candidate cluster head and members in it are
determined to be the real tasking cluster head and

members.
Cra = arge, | min®,C’,,, C G, (30)
CH,,, {CH,kH | CH'),, € Ck+1} (31)
CMk-H = {CmUI.;H l cm”};ﬂ € Ck+1 €;‘i+1]71 (32)

4 Simulation and analysis

In order to seek the optimal combination of tasking
cluster, Genetic algorithm with elitism reservation
strategy' ' is employed to solve this optimization prob-
lem with the reciprocal of @ in Eq. (29) as the fitness
function. If G,,; =@, where @ denotes an empty set,

then C,,, = {CH,!|, and the target position and error

covariance are determined as the prediction estimation
If G,,, #0©, Genetic op-

erations begin. The flow chart of multi-objective opti-

of current cluster head CH,.

mization sensor node scheduling scheme based on Ge-
netic algorithm is schematized as Fig. 2

Initialization

Constltute a candidate node
set Gyn

=

Constitute a candidate
cluster C;

Predict the state covariance P, ; .11, and compute
the value of tracking accuracy index @,

Predict the energy consumption of CH,,, and CM,,,, and
compute the value of energy efficiency index &)

objective optimization function ®

Exceed the fixed number
of generations?
Y

‘ Output real tasking clusterC,,

‘ Compute the value of multi-

Update the target state and
predict it at next time step

Exceed the fixed number
of time steps?
Y

Fig.2 Flow chart of multi-objective optimization

sensor node scheduling scheme

In Genetic algorithm, the evolutionary population
withuNV,,, chromosomes is encoded into aulN,,; X N,,,
binary matrix, where y is an adjusting factor which ad-
justs the size of the population to improve the conver-
gence rate of Genetic algorithm. Each chromosome re-
presents a candidate cluster C,,, and each gene ge,, ,i
=1,2,

whose value indicates whether it belongs to C,,,.

-,N,,, in it responds to a candidate node

; 0, responding node doesn’t belong to C,,,
8€r = { . '
1, responding node belongs to C,,,
In order to prove the superiority of our proposed
sensor scheduling scheme based on energy efficiency
and tracking accuracy ( SEETA) ,

following three different sensor scheduling schemes is

a comparison with

made.

a. SSECQ ( Sensor scheduling scheme based on
energy consumption quantity ) : to minimize the energy
consumption quantity, i.e. the case of &, = 1 in

Eq. (29);
b. SSMNN ( Sensor scheduling scheme based on
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maximal number of cluster nodes): to select all the
sensor nodes which satisfy the constraints in Eq. (28)
in the sensing range for the target as cluster nodes;

c. SSEKF ( Sensor scheduling scheme based on
Extended Kalman Filtering) ; to employ EKF algorithm
to estimate target state and error covariance, rather
than UKF algorithm used in the above three schemes.

4.1 Simulation setup

The proposed scheme is tested in a single-target
tracking scenario. The monitoring area is a 100m X
100m rectangular region with 60 sensor nodes dissemi-
nated randomly inside and forming a sensor network.
Assume that all the sensor nodes have the same sensing
radius r; = 20 and the same measurement noise vari-
ance a'f = 2. To construct an energy imbalanced net-
work, the initial energy of all nodes is set to 0.5] ex-
cept that of the 7" and 44" nodes to 0. 1J. The whole
simulation lasts for 40 time steps. The other parameters
and their values are listed in Table 1.

Table 1  Parameters in the simulation
Parameter Value Parameter Value
Num 60 t 0.2s
e, 45 x10~° J/bit e, 10 x 10 =" J/bit + m’
e, 50 x 10 ~°J/bit e, 135 x 10 ~°J/bit
b, 264 bit b, 16 bit
& 0.5 &, 0.3
2 0 0.074 ]
v 10 o 5

In UKF, the initial state and covariance matrix

are assumed respectively to be X, = )A(om =[0,5,70,
257" and P, oo =0.017,, where I, is a 4 x4 identity
matrix. The covariance of process noise W, is Q, = I,.

In Genetic operations, the crossover probability
and mutation probability are set to 0.8 and 0.7/N,,,
respectively. All the simulation figures are average re-
sults of 50 experiments except Fig. 3 and Fig. 5.

4.2 Results and Analysis

Fig. 3 shows the real and estimated trajectories of
the target with aforementioned four sensor scheduling
schemes. The number labeled on each sensor node is
its identification number. The nodes that are selected
as cluster heads are linked to the target position at that
time step. From Fig.3 we find the estimated trajecto-
ries with SEETA, SSECQ, SSMNN schemes are very
close to the real trajectory, but the estimated trajectory
with SSEKF scheme has deviated obviously in latter

half of the path, which demonstrates that when there is
significant change in target motion, the estimation per-
formance of EKF declines obviously in contrast with
UKF. However, using the same state estimation algo-
rithm of UKF, SSMNN scheme which schedules all en-
ergy-sufficient sensor nodes and SEETA scheme which
selects a part of optimal nodes almost take on equal

tracking accuracy.

42° 6&37 ‘ O Sensor node ‘
X — Actual trajectory |-
20 84 047 —e— SEETA
80 —*—SSECQ
70 .
60
E 50 s’
-~
40
30
20
54
g 0 g .
&6
i 20 40 60 80 100

x(m)

Fig.3 Target trajectories and cluster heads

The distance between real and estimated positions
of the target is taken as the tracking error. From Fig.4,
for the four sensor scheduling schemes, the tracking
error of SSEKF is larger than others, which further il-
lustrates that the estimation performance of UKF is su-
perior to that of EKF when the target moves with high
randomness. Among SSECQ, SEETA and SSMNN, the
tracking error of SSECQ is the largest because in order
to minimize energy consumption quantity it schedules
fewer nodes in the selection of cluster nodes.

3.5
—e— SEETA
—*— SSECQ
—v— SSMNN
—&— SSEKF

N
W

N

1.5

Tracking error (m)

Time step

Fig.4 Tracking error

From the above comparison it is known that in
terms of tracking accuracy, SSEKF scheme works worst

among the four schemes while SSMNN and SEETA
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the cluster length ( the
number of tasking nodes in a cluster, i.e. L,) with SS-
MNN scheme is much longer than that with other
schemes as shown as Fig.5. That’ s because with the

schemes do best. However,

SSMNN scheme all woken and energy-sufficient sensor
nodes are scheduled to work.

12 T T T
mm CSBQL
[ZZ] CSBQN
10+ N [ CSBMN}

Cluster length
(=)}

Time step k
Fig.5 Cluster length

In terms of energy efficiency, some parameters about
network energy and lifetime are listed in Table 2. For
the SSMNN scheme,

ciency index,

without the effect of energy effi-
the energy consumption is much more
than other three schemes. From the perspective of en-
ergy balance, which SSMNN and SSECQ haven’t con-
sidered, the standard deviations of their remaining en-
ergy are both larger than others. Final remaining energy
of every node is also shown in Fig. 6. With the SSMNN
scheme, the remaining energy of the nodes located in

the region of target frequent motion , such as 7" | 16" |

201h , 32nd ,

of other nodes.

44" 46"™ | 57" node etc. , is less than that
With the SSECQ scheme, the nodes
such as 7", 14", 16", 35", 44"
node, have obviously less remaining energy than that
with SEETA and SSEKF schemes. On the contrary, in
order to optimize the distribution of remaining energy,
the SEETA and SSEKF schemes may discard the nodes

that close to target but without sufficient remaining en-

close to the target,

ergy and select those a bit farther but energy-sufficient
nodes. For example, the 7" and 44" nodes whose ini-
tial energy (0.1]) is lower than others are rarely
scheduled though they are very close to the target. So
SEETA and SSEKF schemes prevent a fraction of nodes

from coming to a premature death effectively, and their
network lifespan gets prolonged.

H
[aa}
&
20 0 50
gs
=
Z3
()
@ 60
< £
% (-4
60
.5
[aa}
[75]

sensor

Fig.6 Final remaining energy

Table 2 Parameters about network energy and lifetime after tracking process

Scheduling Energy Remaining Standard Network
scheme consumption(J) energy(J) deviation lifespan ( Time step )
SEETA 1.8648 27.3352 0.0800 40
SSECQ 1.7361 27.4639 0.0888 19
SSMNN 2.4005 26.7995 0. 1095 16
SSEKF 1.8158 27.3842 0.0886 40

5 Conclusions

A multi-objective optimization sensor node sched-

uling algorithm is designed aiming at improving energy
efficiency and tracking accuracy. The trace of error co-
variance in UKF algorithm is determined as tracking
accuracy index. An energy efficiency index considering
comprehensively energy consumption quantity and re-
maining energy balance is established.

Our next work will extend the application of multi-
objective optimization sensor node scheduling algorithm
to multi-target tracking by selecting disjoint tasking
clusters. And state estimation algorithms with higher

accuracy will be used.
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