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Abstract

The acquired hyperspectral images ( HSIs) are inherently affected by noise with band-varying
level, which cannot be removed easily by current approaches. In this study, a new denoising method
is proposed for removing such kind of noise by smoothing spectral signals in the transformed mulu-
scale domain. Specifically, the proposed method includes three procedures; 1) applying a discrete
wavelet transform (DWT) to each band; 2) performing cubic spline smoothing on each noisy coeffi-
cient vector along the spectral axis; 3) reconstructing each band by an inverse DWT. In order to
adapt to the band-varying noise statistics of HSIs, the noise covariance is estimated to control the
smoothing degree at different spectral positions. Generalized cross validation (GCV) is employed to
choose the smoothing parameter during the optimization. The experimental results on simulated and
real HSIs demonstrate that the proposed method can be well adapted to band-varying noise statistics
of noisy HSIs and also can well preserve the spectral and spatial features.
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spectral smoothness

0 Introduction

A hyperspectral image (HSI) is generally com-
prised of dozens to several hundreds of gray-level ima-
ges taken in a contiguous spectral range with a high
spectral resolution, so it provides rich spectral informa-
tion utilized to improve the accuracy of hyperspectral
applications, like unmixing, terrain classification and
object identification. However, HSIs often suffer from
various kinds of sensor noises (e. g. photon noise,
dark noise and readout noise) and noise from atmos-
pheric effect (e. g. the absorption of water vapor and
the scattering effect)!"®!. Thus, denoising of HSIs is
an important task for further applications.

Some researchers apply 2-D filtering methods, for
instance wavelet shrinkage technique and anisotropic
diffusion, into the spectrum-decorrelated HSIs!**"!.
These methods assume noises and signals can be well
separated by linear transformations, such as principal
component analysis (PCA) and maximum noise frac-
tion ( MNF) ™.
HSIs with fizxed or low-level band-varying noises. Oth-
man and Qian'®' put forward a hybrid spatial-spectral
derivative domain wavelet shrinkage method to improve

But, they only perform well for the

the HSI’ s signal-to-noise ratio ( SNR). The method
assumes that the noise is signal-dependent and it is on-
ly effective for HSIs carrying a very high SNR, e. g.

600 :1. The noise in these HSIs is mainly produced by
imaging sensors, whereas our target noise in this paper
is produced by atmospheric effect, which has a rela-
tively high noise level. Other researchers treat HSIs as
3-D tensors and enhance the HSIs in both the spatial
domain and the spectral domain''*. Also, several 1-D
smoothing techniques have been widely used to directly
smooth the reflectance spectrum separately to reduce
the noise, these methods include Savizky-Golay (SG)
filtering, average filtering, fast Fourier transform filte-
ring! %11 [12]
methods don’ t use the 2-D spatial information of HSIs,
they are only effective for spectra with low level noise.

and cubic smoothing spline' . Since these

However, the noise variance of HSI may vary from
band to band with a high level. These methods will
break down in this kind of noise environment. In this
paper, we propose a new denoising method that bene-
fits from the compactness of the wavelet transform and

the smoothness of spectra to address this problem. For
the HSIs, on one hand, both the high spectral resolu-
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tion and the low spatial resolution lead to strong conti-
nuity and smoothness of spectral signal. This phenome-
non is especially obvious for the reflectance HSIs. On
the other hand, in the spatial domain, all the bands of
any HSI have the same geometry structures, and this
characteristic will be kept in the transformed multiscale
domain of 2-D space. Thus, we smooth noisy coeffi-
cients signal in the wavelet domain of spatial domain
along the spectral axis to enhance HSIs. We estimate
the noise covariance matrix of different bands to adjust
the smoothing degree at each spectral position. Thus it
can be well adapted to the varying noise level from
band to band in HSIs.

The remainder of this paper is organized as fol-
lows. In Section 1, we review related work about cubic
smoothing spline; Section 2 introduces the proposed
denoising framework; Section 3 presents the experi-
mental results and the paper is concluded in the last
section.

1 Related work about cubic smoothing spline

Smoothing spline, which has been widely used to
reduce experimental noises, is a classic data-driven

. . 13,14
nonparametric regression method' "

It can keep
enough smoothing degree without requiring prior knowl-
edge of regression curves. Considering a 1-D noisy sig-
nal y with the following model,

y(%,) =g(x,) +€, n=1, N (1)
where €, denotes Gaussian noise and €, ~ N(0,02) ,
g(x) is supposed to be a smoothing clean signal, i. e.
has continuous derivatives up to some order over the
whole domain. %, < +-+ < xy are coordinates of the do-
main. For the spectral signal, x, corresponds to the
wavelength of the n-th band. The signal g can be esti-
mated by following cost function,

A

g = argmin{ (y -g)' D (y-g) +afw(g"(t))2dt}

(2)
where D = diag(oy,*+,04) , ¥ = (y1,",yx) andg
= (gi,*,&y)" . The first and second terms corre-
spond to the residual sum-of-squares and the penalty,
respectively. The penalty term uses a square integral of
the p — th derivative of g, which determines the smoot-
hing degree of g. It can keep p order continuity of
smoothing signal at the inner knots. In this study, we
choose p = 2, and it leads to a cubic smoothing spline,
which can be computed efficiently. Parameter a con-
trols the tradeoff between fitting to data and smoothness
of the estimated signal.
Given «, the solution to Eq. (2) with the natural

boundary condition is

g =A(a)y = (D7 +aQR™Q") "Dy (3)
where Q@ and R are N x (N -=2) and (N -2) x (N -
2) band matrices, respectively, referring to Ref. [ 15]
for details. A(a) is the influence matrix and will be
used for the parameter selection.

2 Cubic smoothing spline in the wavelet
domain

For low level noises, smoothing spline'”! and oth-

(10,111 ¢an be used

er non-parametric regression methods
to reduce the spectral noise. But when the noise level
is high, this kind of methods cannot work well. In this
research, we incorporate the 2-D spatial information of
local neighborhood of each pixel during the smoothing
by applying the cubic spline smoothing to the coeffi-
cient curves in the wavelet domain along spectral di-
mension, which can lead to a more robust result than

directly smoothing spectra in the original domain.

2.1 Observation model with multiscale represen-
tation for HSIs

The original HSI consists of N € N * spectral
components s of spatial size L x Lwithn e {1,---,
N}. Assume that these components are corrupted by
additive Gaussian noise, and in the spatial domain,
observation vector ¥ can be expressed as

r(m) =s(m) +e(m), Ym e {1,--- L}*

(4)
where e(m) = (e'(m),---,"(m))" and e(m) ~
N(0,C).

Noise €(m) is independent of s(m) = (s'(m),

-.s"(m))". C* denotes the covariance matrix of €.
We also assume that noise level is different from band
to band.

Let rj("’o) (k) denote the wavelet coefficients of the
noisy image at the spatial position kK {1,---,Lj}2,
resolution level j, orientation subband o, and image
band n. sj("’o) (k) and EJ.("’O) (k) correspond to wavelet
coefficients of the noise-free image and noise, respec-
tively. With the vector representation, the wavelet co-
efficients of all the NV bands at the same spatial position
k in a subband of the same orientation o and at given

resolution level j are grouped into an NV dimensional vec-
tor, defined as {r,s,e} withk e {1,---,Lj}2
17 (k) & (1 (K) e, (K)
5,7 (k) & (577 ()08 (R)" ()
&” (k) & (¢ (k). (k)"

Therefore, the observation model in the wavelet

>
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domain for allk e {1,---,L.}*is given by

J

rj(”)(k) = s;"’(k) +.s;">(k), 0o e i1,2,3,al
(6)

Due to the linearity of the orthogonal discrete
wavelet transform ( DWT ), the wavelet coefficients

e; ?) (k) of noise still obey the Gaussian distribution
(N(O, CJO) ). Tt is assumed that the noises of all the

points in the same subband are independent and identi-
cal in distribution, and thus CJ.(E’O) =C"“is got for all
the levelsj € {1,---,]}.

2.2 The cubic smoothing spline in the wavelet do-
main

In imaging spectroscopy, the high spectral resolu-
tion and the strong spectral mixture effect of a low spa-
tial resolution within each pixel together result in the
strong continuity and smoothness of spectra. This is
more prominent for reflectance spectra, which can be
usually obtained by an atmospheric correction from the
radiance data. The abruptly large variations ( spike-
like features) in the spectral signature of a pixel must
be caused by noise, therefore they should be sup-
pressed”’. The spike can be got rid by smoothing
along the spectral direction. In addition, HSIs can be
treated as a volume of extruded structures delineated by

3] " In natural

the edges in the original spatial planes
scenes, image edges due to landscape features (the

boundary between different landscapes, e.g. build-

HL.LH,HH

ings, trees, roads) are well correlated along the spec-
tral axis. Hence, their locations do not change from
band to band.

Because of these characteristics, the subbands in
the wavelet domain for HSI within the same orientation
and same resolution, but within different bands should
keep very similar geometry structures still, thus, the
coefficients vector sj(o) (k) have strong continuity and
smoothness too along the spectral axis. Therefore noisy
coefficients vector rj(a) (k) can be smoothed by a cubic
smoothing spline along spectral dimension to reduce
noise of HSIs. According to Eq. (3), it is estimated
that clean coefficients vector sj(a) (k) for allk e {1,
e, L ? by the following expression

5,7 (k) = (C" +aQR™'Q") "' C'r” (k)

0o e {1,2,3,a} (7)
where Q and R are the same with counterparts of

Eq. (3).

2.3 Proposed denoising framework

The proposed denoising framework (as shown in
Fig.1) is comprised of three steps: firstly, all the
bands of a HSI are transformed into the wavelet do-
main; secondly, perform cubic spline smoothing on
each noisy coefficient curve along the spectral axis at
each spatial position for all subbands; thirdly, de-
noised HSI is got by the inverse wavelet transform.

Dexarised LL

Dayaised HST

HL,LHHH

Fig.1 Denoising framework of the proposed method, only two levels of decomposition are shown, the HH, LH, HL

denote the detail subbands and the LL denotes the approximation subband

Since the approximation subband (0 = a) is ob-
tained by a successive of low pass filtering, each coef-
ficient is the weighted sum of its neighborhood. Apply-
ing the smoothing spline to the noisy coefficient curves
in the approximation scale is equivalent to incorpora-
ting the spatial local information during the denoising.

For the orthogonal DWT'™! | most of image energies
are compressed into the approximation subband. Due
to linearity of DWT, the noise intensities are the same
with the original domain. Therefore, the noisy coeffi-
cient curves in the approximation subband have much
higher SNRs than the noisy spectra in the original do-
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main. So this can increase the robustness of the curve
fitting during denoising.

For the high frequency detail subbands (0 e {1,
2,3} ), all the coefficients in each subband can be
coarsely divided into two parts. The coefficients with
large magnitudes correspond to the edges ( discontinui-
ty region ), and the coefficients with low magnitudes
correspond to the continuity region (uniform region) ,
which includes the same substance with very similar
spectra. For a clean image, the coefficients of the uni-
form region in the wavelet domain are zero. For a noisy
image in the same region, the magnitudes of coeffi-
cients are larger than 0. Thus, the coefficient curves
along the spectral dimension in the uniform region are
fluctuating direct lines with zero mean. It is easy to fit
the noisy coefficient curves to direct lines by any re-
gression methods. It is similar in the discontinuity re-
gion, but with a nonzero mean. Therefore, high fre-
quency subbands of DWT are also helpful for denoising
a HSI.

The above analysis indicates that the wavelet rep-
resentation can assist in denoising an HSI through a cu-
bic smoothing spline.

2.4 Optimal parameter selection

This part introduces methods to determine the
smoothing parameter o and the noise covariance matrix
D(C). Parameter o in Eq. (2) controls the tradeoff
between the fidelity and the smoothness. And hence,
choosing a proper smoothing parameter plays an impor-
tant role for HSI denoising. Several methods have been
proposed to determine the optimal smoothing parameter
o). In this investigation, the generalized Cross-Vali-
dation (GCV)™! is utilized to determine the optimal
a. GCV can be expressed as the function of the influ-
ence matrix A(a) ,

1 -ty
W 1D - Ala))y |

T.Tmce{f -Aia))]”

]
s

where Trace( ¥ — A{ o)  denotes the trace of matrix I —
A(w), fis an identity matrx with the same size of
Ao}, Nis the length of signal . Optimal o can be
estimated through a minimization of GCV( ) within
some interval [a,b]. For a given a, GCV(a) can be
efficiently computed by p* x N operations if D is a diag-
onal matrix!®. p denotes the order of derivatives in the
penalty term of Eq. (2).

The noise covariance matrix D(C) plays the role
to finely tune the local smoothing degree of each spec-
tral position. For simplicity, we assume that the noise
of different bands is independent. Therefore, we only

need to estimate the noise variance of each band. A ro-

bust median estimator is used from the finest scale

wavelet coefficients™'® |
. n,l
median(| s |)

/Do = 0. 6745 (9)

n,l . . .
where s,” and D, , denote the wavelet coefficients in the

finest scale and the noise variance of n-th band, re-
spectively.

3 Experimental results

In this section, in order to verify the denoising
performance of the proposed method on HSIs, an ex-
periment is done on three HSIs (See Fig.2). For the
first two datasets (Fig.2(a) and (b)), simulated
band-varying Gaussian noise is added for quantitative
comparisons. Besides, the proposed algorithm is also
applied to a real HSI, Pavia Center (Fig.2(c)). The
PCA-based HSI denoising method ( PCA-BiShr) pres-
ented in Ref. [4], the 2-D (2DBiShr) and 3-D
(3DBiShr) bivariate wavelet shrinkage based meth-
ods'?") are utilized for comparisons. In addition to
comparing the visual results of space and spectrum of
different techniques, the performance is quantitatively
measured by the SNR and root mean square error

(RMSE) , which are defined as
> 5(i, j, D*

SNR = 10 loglO[ Lt -]
_Zl(s(i,j, D -s(i,j, 1)
h (10)
JZ (5Ci, j, 1) =G, j, 1))’
RMSE = |22t . (11)
NL

where § and s correspond to the restored and the clean
HSI, respectively.

(<) Pevia Center

(b1 Beltsvillz

[a] San Dhego
Fig.2 Hyperspectral datacubes of San Diego (a),
Belisville (b) and Pavia Center (c)

3.1 Experimental datasets

San Diego, Fig.2(a), is a naval air station in
San Diego, California, 3m x 3m for each pixel, about
10nm spectral resolution, 224 bands and collected by
the AVIRIS sensor, which has been corrected into re-
flectance data'™!. Most part of Beltsville (Fig.2(b))
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reflectance dataset is covered by natural vegetation.
The spectra of Beltsville have very high smoothness.
The speciral resolution is about 5.5nm. A part of 200
%200 %120 is selected for experiments. Pavia center,
Fig.2(¢), is captured by the ROSIS-3 senor in 2004
with 102 bands. The spectral resolution is about 4nm.
Only a part with the size of 128 x 128 x 102 is selected
for experiments. More than 10 bands (about ranging
from 430nm to 480nm) are corrupted by band-varying
noise, the noise level decreases as wavelength increa-
ses. The specira of the three datasets all have strong
smoothness and continuity because of very high spectral
resolutions.

Because the optimal parameter « is not only relat-
ed to the noise level of the signal, but also related to
the signal, we should search an a for each spectrum
separately. This leads to a huge computational burden.
The whole HSI usually includes many distinet land-
scapes with very different spectral signatures, which
results in a very large searching interval of [a,b],
generally b/a > 10°. Finding the optimal o quickly is
critical for the practical application of the proposed al-
gorithm. During the experiments, we find that the
curve of GCV( ) in the interval [ a,b] has an approxi-
mate quadratic form, therefore the time for searching
an optimal & can be reduced by a quick line searching
method. Golden section algorithm'’
find the optimal @ in this work.

is employed to

" (f) SD-CSS
Fig.3 Denoising results of band 45 for SanDiego

(2] PCA-BiShr

3.2 Experiments on simulated dataset

(1) San Diego: The Gaussian noise with band-
varying variances is added into 90 continuous bands se-
lected from San Diego dataset, the smallest and largest
noise standard variance are 0.5 and 9.3, respectively.
Note that the pixel values have been scaled into range
[0,255] before adding the noise and then rescaled in-
to the original range. The search region of ais [ 1.0e
-5,1.0e +3]. The band 45, which has been heavily
corrupted with the largest level noise, is shown in
Fig.3(b). Fig.3(c)-(e) correspond to the denoising
results of BiShr3D, BiShi2D and PCA-BiShr, respec-
tively. Meanwhile, the result of directly applying cubic
smoothing spine (SD-CSS) to each spectrum is also
given for comparison in Fig.3(f)"™. Fig.3(g) and
(h) correspond to the results of the proposed method
without (NCRDWT-CSS) and with (RDWT-CSS) es-
timating the noise variance to regulate local smoothing
degree for redundant DWT (& trous wavelet'™ ) | re-
spectively. Fig.3 demonstrates that the proposed meth-
od performs better than the other methods for the HSI
with large band-varying noise. BiShr3D fails to reduce
the noise of damaged image, since it is not a local
method and estimates the noise variance of 3-D HSI as
a whole. BiShi2D denoises each band separately with-
out considering the spectral correlation, thus it also
produces poor results.

th) RDWT-CS5
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Fig. 4 gives the details of restorations of PCA-
BiShr, SD-CSS, NCRDWT-CSS and RDWT-CSS. Bet-
ter visual result is achieved by the proposed methods.
Fig.5 shows the restored high frequency coefficients

{b} PCA-BiShr

(eh SD-CSS

along the HL direction at the first scale of band 45 for
the redundant DWT. It can be seen that the high fre-
quency coefficients have been well restored by the cu-

bic smoothing spline along the spectral axis direction.

[a&) clean

(d) KCROWT-CSS (e} RDWT-CSS

Fig.4 Details comparison of different denoising results with respect to Fig. 3

c} denoised
Fig.5 The restored high frequency coefficients of HL direction
in the first scale of band 45 for the redundant DWT.
original (a), noisy (b) and denoised (c¢) coefficients

{a) clean 7 ﬂ:jnois:.' i

.—--{ti_ziul Ii
| iy
—-~PCA-BiST | i
) - EDCES | ||
SN0 — Ry TS | ] J
i | 1l I -
LT LT
z
A
400 -

scliuii valugs

SO0 [oh) oo A Lo b LU CIR [ v I 15
“avelenalno!
(2} Spectrum

Fig. 6{ a) illustrates spectra of criginal, noisy and
restorations denived by different methods. The proposed
method gives the best restored spectrum ( red solid
line). The SD-CSS only considers the spechum conti-
nuity without incorporating the spatial information, it
can " { accurately recover the spectral features with large
noise (blue dash star line). The spectrum restored by
PCA-BiShr has a steep jump near band 45 (see color
image). Thus, RDWT outperforms other methods.

Fig.6 (a) spectra comparisons of different methods, the parameters used are the same as Fig. 3;

(b) the SNR comparisons of each band of different methods

Fig. 6(b) shows the SNRs curves along the wave-
length, the SNRs are calculated band by band with
Eq. (11). The figure demonstrates that RDWT-CSS
gives the best SNR scores and a consistent improve-
ment of all the bands. PCA-BiShr also performs well
for the bands with highly noise levels, whereas, it de-
grades the bands of relatively high qualities ( two
ends).

The SNRs and RMSEs of different methods are il-
lustrated in Table 1. RDWT-CSS gives the highest

SNR and lowest RMSE scores for the whole data. The
implementation with noise variance to adjust the local
smoothing degree produces a higher SNR than the
method without noise variance. Besides, the redundant
DWT gives higher SNRs than orthogonal DWT.

(2) Belisville; The Gaussian noise is added to
each band of Beltsville with zero mean and the standard
variance is equal to 3% of its maximum amplitude.
Thus, the noise levels vary with wavelength. The
search region of wis [1.0e —5,1.0e +3].
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Table 1 The SNRs and RMSEs of different denoising methods for simulated San Diego with band-varying noise.
(No) Noise Covariance means (no) estimating noise covariance to adjust the local smoothing degree
No Noise Covariance Noise Covariance
Noisy  BiShr3D  BiShi2D  PCA-BiShr
SD-CSS DWT-CSS RDWT-CSS SD-CSS DWT-CSS RDWT-CSS

RMSE 692.17 530.65 386.39 143. 47 202.91 152.75 135.60 179.71 135.15 118.37

SNR(dB) 13.18 15.54 17.97 26.63 23.63 26.09 27.14 24.66 27.15 28.30

Fig.7 and Fig.8 show the 2-D spatial denoising
results and SNR evolution curves of different methods,
respectively. The figures demonsirate similar resulis
with the experiments on San Diego are achieved for
Belisville. Some spatial features have been smoothed
out by BiShi2D and BiShr3D. Whereas, the proposed
multiscale smoothing method (RDWT-CSS) can well

(f) SD-CS8

Fig.7 Simulated Beltsville, denoising results of different methods with band 85. (a) clean; (b) noisy; (c¢)BiShr3D with 3 scale
and 7 x7 x7 window size; (d) BiShi2D with 3 scale,haar wavelet and 5 x5 window size; (e) PCA-BiShr, the first two PCs
are kept unchange, haar wavelet, 3 scale, 7 X7 window size for bivariate wavelet shrinkage for left components; (f) SD-CSS;
(g) and (h) correspond to NCRDWT-CSS and RDWT-CSS with 3 scale and haar wavelet, respectively.

(e} PCA-BiSh

El

—— Mupusy

| ——Eih:2D
~==Eih3D
—e— QD-ChE
—+—RIWT-CES

EMR{dB)

o

R
wavelengitim]

Fig.8 The SNR comparisons of different methods for Beltsville

restore the spatial features by utilizing spectral smooth-
ness. The RDWT-CSS also performs better than SD-
CSS. Fig.8 and Table 2 illustrate similar resulis are
achieved by RDWT-CSS and PCA-BiShr, since most
part of Beltsvillie is covered by natural vegetation with
very similar spectra. But RDWT-CSS performs produ-
cing much better SNRs than other methods.

iz} MCRDWT-CSS {h) RDWT-CS8

3.3 Experiments on pavia center dataset

In this experiment, the proposed method is ap-
plied 10 a real data, Pavia Center, which has often
been wsed for validating the hyperspectral classification
algorithm. Because of strong noise in the first 10
bands, researchers always avoid using them for classifi-
cation™" |

Fig. 9 illustrates the dencising results of different
methads. Although the 2DBiShr has removed most of
the high {requency neise, it also leads to heavy block
effects (Fig. 9L} 1. SD-CSS and RDWT-CSS produce
slight better resulis than PCA-BiShr, especially for the
band with heavier noise { band 3). Fig. 10 shows
smoothed spectra by different methods. The PCA-BiShr
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has dramatically changed the spectral values in the re-
gion of clean bands, whereas the proposed method can

well preserve the original clean spectral signatures of a
spectrum while denoising the noisy region.

Table 2 The SNRs and RMSEs of different denoising methods for simulated Beltsville with

estimating noise covariance to adjust the local smoothing degree

Noisy BiShr3D  BiShi2D  PCA-BiShr  SD-CSS DWT-CSS  RDWT-CSS
RMSE 129.06 63.64 81.07 30.99 57.36 34.75 30.97
SNR(dB) 21.36 27.46 25.35 33.70 28.36 32.71 33.71

{a) noisy (b3 BiSheZD

{ry PCA-BiShr

o s

£d) SD-CSS

(e} RDWT-CSS

Fig.9 The denoising results of Pavia Center data by different methods. The first and second rows correspond to the band 3 and band
5, respectively. (a) noisy data; (b) BiShr2D with 3 scale and haar wavelet; (¢) PCA-BiShr, the first band principal com-
ponent is kept unchanged, 3 scale and haar wavelet are used in the bivariate shrinkage, dual complex DWT is used to denocise

the spectrum separately; (d)SD-CSS; (e) RDWT-CSS with 3 scale and haar wavelet.

o || M
B0 o p s BiSH
—— SIS
—=— ROWT-C85

1100

spactium values

E
Tl ]

PR Y

S0 L '
45 S 350 S0 &5 0 AL 300
~werszlznzibi=m;}

Fig. 10  Original spectrum and smoothed specira by different

methods, the parameters used are the same as Fig. 9
4 Conclusion and discussion

We have presented a multiscale smoothing frame
to enhance the noisy HSIs with highly band-varying ad-
ditive Gaussian noise in this paper. Experimental re-
sults illustrate the proposed multiscale method can well
recover the spatial and spectral features. It outperforms
the wavelet threshold-based methods and directly

smooth spectra using the cubdc smoothing spline. In
addition, the denoising performance can benefit from
estimating ncise covanance as weights 1o adjust the
smocthing degree of each spectral posiion. Note that
we use the cubic smoothing spline to denoise the spec-
tral signal in this paper, in fact, many other 1-D de-
noiging methods can replace the simoothing spline. The
smovthness assumption for the apectral signal is strong
to a cerain extent for some real HSIz, some sharp
speciral signatures may be smoothed out. Therefore,
we Tocus our study on the reflectance HSls, which have
a stong spectral smoothness, especially for the scenes
covered by natural vegetation. Next, we will consider
some adaptive smoothing methods according to signals.
In the high frequency subbands of multiscale decompo-
sition, the energy mainly locates at the strong image
edges, the occupied area of which in the whole image
may affect the adjusting effects of noise covariance.
This needs to be explored thoroughly in the next.

The computational complexity is relatively high,
since finding the optimal smoothing parameter. The
computational time for DWT-CSS is about 1800 sec-
onds with a Matlab simulation for a HSI with the size of
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200 x 200 x 90. The computer is configured with
2.2GHz, Dual Core Process and 2G Memory. The
time can be dramatically decreased with a further opti-
mization. It can be also alleviated by a parallel compu-
ting, since the proposed method can be paralleled easi-

ly.
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