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Abstract

The reasonable measuring of particle weight and effective sampling of particle state are consid-
ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the
comprehensive treatment of above problems, a novel two-stage prediction and update particle filte-
ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly,
combined with the construction of multi-senor observation likelihood function and the weight fusion
principle, a new particle weight optimization strategy in multi-sensor observation is presented, and
the reliability and stability of particle weight are improved by decreasing weight variance. In addi-
tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil-
ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain
containing the latest observation information is used to directly optimize state estimation in the frame-
work , which avoids a large calculation amount and the lack of universality in proposal distribution
optimization way. The theoretical analysis and experimental results show the feasibility and efficiency

of the proposed algorithm.

Key words: multi-sensor information fusion, particle filter, weight optimization, prediction

and update

0 Introduction

In many scientific and practical problems, an esti-
mation of the time-varying system state using a se-
quence of noisy measurements is required. The dynam-
ic state space modeling approach is widely used in
many applications, such as control, astronomy, eco-
nomic data analysis, communication and radar surveil-
lance. For the linear discrete system, several filtering
methods have been reported, for example, Kalman fil-
ter(KF) and grid based filter™"!. In these filters, the
posterior density probability was assumed to be Gaussi-
an. However, in many real problems the posterior den-
sity is nonlinear and its performance is not as good as
expected. To overcome this problem, many researches

have been reported on the nonlinear filtering methods
such as extended Kalman filter (EKF) and some sam-

pling nonlinear filiers™>?!. One of the famous methods
is the particle filter ( PF) 51 In the particle filter,

any assumption on the functional form of the posterior

is not made. Instead, the posterior probability density
is approximated as a set of particles with associated
weights. When these particles are properly placed,
weighted and propagated, posteriors can be estimated
sequentially over time. The density of particles repre-
sents the probability of posterior function. By using a
finite number of particles, we can estimate almost any
kind of system dynamics, even nonlinear system with
non-Gaussian, or multimodal distributions.

As we all know, the effective sampling of particle
state and reasonable measuring of particle weight are
considered as two important aspects to obtain better es-
timation precision in realization of PF. The first is to
optimize sampling particle by the introduction of cur-
rent observation, and some existing solutions include
the proposal distribution optimization, Markov Chain
Monte Carlo'® 7
and intelligent optimization methods'®' , et al. The sec-

, the construction of kemel function

ond is as far as possibly to reduce the adverse influence
from random observation noise in the measuring process
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of particle weight, such as cost reference strategy'.
Nevertheless, the above achievements mostly focus on
the single sensor observation system, are mainly to re-
solve the own disadvantage in the particle filter theory.
Based on the characteristics of multi-sensor fusion sys-
tem, the studies of design and application for PF are
relatively few. Xiong and others gave a new multi-sen-
sor sequential particle filtering method by the dynamic
combination of multi-sensor sequential fusion way and
particle filter, and obtained better filtering preci-

(10 " But its calculation amount expands rapidly

sion
with the increase of sensor number in the estimation
system. Under the wireless sensor network environ-
ment, Gu and others designed a kind of distributed im-
proved particle filter for the target tracking prob-

lem''!!

, its main idea is to adaptively allot with the
number of particles in the local node. But the cost of
filtering precision improved is the deterioration of real-
time. Achutegui and others proposed a distributed sam-
pling strategy for independent node based on re-sam-
pling technology with non-proportional allocation'?!
and it utilized the existing observations to approximate
the missing observation. This method has some refer-
ence values to improve the communication loads of
node data and the filtering precision in wireless sensor
networks. Nevertheless, the estimation accuracy of
missing observations depends strongly on the sensor
number of a measuring system, so more sensors are
needed in the measured system. Armesto and others
proposed the interpolation particle filter for the mobile
robot localization and map-building system based on in-
terpolation technique!’. Because the observation rele-
vant problems are effectively solved, its application ar-
eas are limited to some extent. Considering the com-
prehensive treatment of observation uncertainty and
multiple sampling rates, Francois and others proposed
the multi-sensor fusion particle filter based on observa-
tions Markov switching model™'. However, the effec-
tiveness depends on the accurate preset of observation
model prior probability and state transition probability,
meanwhile the state transition model is required to
match sensors with different observation rate, these as-
sumptions are difficult to achieve in the actual applica-
tion.

According to the analysis above, a novel two-stage
prediction and update particle filtering algorithm based
on particle weight optimization in multi-sensor observa-
tion ( TPF-PWO) is proposed in this paper. The re-
maining of the paper is organized as follows. The first
section briefly introduces the basic features of particle
filter. The second section provides the theoretical deri-
vation on the particle weight optimization strategy and

two stage-prediction and update method. In addition,
concrete realization of TPF-PWO is given. The third
section presents the experimental scene and simulations
analysis. The final section lists the conclusions and
recommendations.

1 Particle filter based on single sensor ob-
servation

Consider the following nonlinear state space model
with the characteristic of multi-sensor observation.

x, = f(x,_) +uy, (1)

Zpm = h(x,) +v,, m =12, M (2)
where x, and z, ,, denote the state variable and observa-
tion of sensor m at time k, respectively. f and h are
known evolution function of state and observation func-
tion. u, ~ N(0,Q,) andv, , ~ N(O,o%’,,,) denote in-
dependently the system noise and the observation noise
of sensor m, meanwhile, they meet identically distribu-
tion (i.i.d). Because the complete information of se-
quential estimation is in p(x, | z,,,), and the prob-
lem of state estimation based on the observation se-
quences of sensor m, can be solved by calculating the
posterior probability density functionp(x,1 z,,, ) of x,
based on all the available data of observation se-
quence. The main idea is to approximate q(x, | 2, ,,)
sampling particle x; with associated importance weights
a);;,,,, from a known and easy-to-sample ¢(x, | z,,, ,,) in
PF, where q(x, | z,,,) is usually named as proposal
distribution, which should be approximate p(x, |
Zy.4m) as much as possible, and the associated impor-
tance weight of particle is defined as

w;t,m < p(x; | zl;k,m)/q(x;t | zl;k,m) (3)

In the practical application, the proposal distribu-
tion is commonly selected as prior distribution p(x; |
x,_,). And particle weight a);;,,,, can be obtained by sol-
ving the observation likelihood degree of every particle
for the observation of sensor m.

O = w;t—l,mp(zk,m | x;,) (4)
where a);;,,,, is normalized and w ;;,,,, denotes the normal-
ized weights, and then the re-sampling step is intro-
duced. In the re-sampling step, the particles with dif-
ferent weights are sampled again with replacement ac-
cording to their weights, and the particles with larger
weights are more likely to be selected than the particles
with smaller weights.

2 Two stage-prediction and update particle
filtering algorithm based on particle
weight optimization in multi-sensor ob-
servation

In this section, firstly, we give the principle and
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process of the particle weight optimization strategy and
the two stage-prediction and update method in detail.
Next, the concrete realization of TPF-PWO is construc-
ted in the framework of PF.

2.1 The particle weight optimization strategy in
multi-sensor observation

In view of the characteristic of multi-sensor obser-
vation system, objectively the necessary condition is
provided to improve the influence of random observa-
tions noise by the utilization of multi-sensor observa-
tions. According to the realization principle of particle
filter and the characteristic of sensor accuracy, mean-
while, according to the construction of multi-senor
likelihood function and the weight fusion ideology, the
particle weight optimization strategy is given to improve
the variance of particle weight. And then we give the
principle and process of particle weight optimization
strategy in detail. It is known that weight a);;,l of parti-

cle i can be calculated by
Wy = s exp(= (2 — B 205 )/ T,
= w;.t—l,m exp( = (v, = (h(x}) - h(xk)))z/zo-v%,m)
/ «/2;0",’”" (5)
According to Eq. (5),
Gaussian distribution with mean h(x.) - A(x,) and

a);;,,,, is subject to the

variance 0%;,,,,,' Secondly, weight @ of particle i after

fusion is calculated at time k£, and A, ,, is used as the

weight coefficient.
(:’;c = (:);.t—l,m m=1/\k,m(exp( - (vk,m - (h(x;c)

S W(x))) R, )/ e, ) (6)

In accordance with its characteristics of Gaussian

distribution , We obtain

im0, )

“‘N(Z /\km(h(xk) -h(x,)), Z
(7)

Eq. (7) shows that the standard deviation of @, can be
written as

M
Ty = A/ Zmzl/\z,mo'fk,m (8)

where o; is smaller, which indicates that the higher
the accuracy of fusion output is. Obviously, whena,, |
is set, o;; is closely related to the distribution of A, ,,.
In order to obtain the highest fusion accuracy, o

should be minimized. Combined with the information
conservation principle, the calculation of o; can be

further attributed to the solving problem of conditional
extreme value. That is when o, ; and Z :=1’\’%"’ =
1(Akm
the value of A(A; ,AL,, "

=0) are known, and to find the conditions that

’/\k,M) = Z

/\km ”'km

is the minimum. Considering that the above is a con-
straint condition equation of multivariable conditions
extremum problems, the solution can be calculated by
the Lagrange multiplier method. After the modified

M
functions ¢( Z o Mem 1) is introduced, and the
function expression of A is given by
M M

A = Z m=1/\i,m0'3k,m + ( Z m=1/\k,m -1) (9)

The partial derivative of A, ,, is calculated on both
sides of this function respectively. If and only if
0A/dA, , is equal to zero, and A can be taken as the

minimum. The expression of A, , is written as

A == 0/<2«r§,,,m> (10)

In view of Z " =1, and
:-2/(2 1/0' (11)
Then Eq. (11) is substltuted into Eq. (10), and
N = /(8,30 1762, ) (12)

After A, ,, is solved, the fusion precision

culated by Eq. (8).
VNIRRT (13)

Vi,m

o ;; can be cal-

According to Eq. (13), when the observation ac-
curacies of sensors are the same and their values are all
o, , we obtain

/R4

o, =0,/ VM (14)
The above equation also shows that the precision

of particles weight can be improved +/M times than the
single sensor, while M sensors with the same observa-
tion accuracy are used. When the observation accuracy
of each sensor is different, and the highest accuracy
and the worst accuracy is o-Z,mu and o-Z,min , Tespective-
ly, and then
SVt w2 00e,) (9
Based on Eq. (15) s
sensor will also be help to improve the variance of par-
ticle weight no matter how bad it is, when the observa-
tion likelihood degrees are weighted by means of the a-
bove way in the multi-sensor fusion structure. And so it
provides the important theoretic basis that multi-sensor

the observation accuracy of

observations can be used to promote the precision of
particles weight.

2.2 Two-stage prediction and update method

The optimization sampling particle is one of the
important ways to improve filtering precision, and the
proposal distribution optimization and MCMC are two
classical methods. The objective of MCMC is to make
particles tend to the stationary distribution so as to
weaken the correlation among particles and expand par-
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ticles diversity, and it is usually applied after re-sam-
pling steps'®.
the process of particle sampling and weight measuring
three times, and inevitably lead to the dramatic in-
crease of computational complexity. The objective of

Nevertheless, it needs to accomplish

proposal distribution optimization is to improve sam-
pling particles by the reasonable utilization of latest ob-
servation information. Some existing algorithms, such
as EPF, IEPF, UPF and GHPF, CDPF, etc'*""",
are its concrete realization. The common features need
run independently a suboptimal filter for every particle,
especially when the dimension of estimated state is
high, which aggravates computational burden undoubt-
edly. In addition, some suboptimal filters are often
limited by system nonlinear intensity and Gaussian
noise hypothesis, so their filtering precisions are close-
ly related to application object, which undoubtedly re-
sults in the lack of universality.

UKF and PF adopt all one-step prediction and ob-
servation update mechanism, and their differences are
only in the realization steps. Moreover, the filter gain
has the property which can preferably describe the uti-
lization degree of the latest observation in UKF. By the
dynamic combination of UKF and PF, we put forward a
kind of two-stage prediction framework of particle fil-
ter. The objective is to optimize directly state estima-
tion, not to optimize single sampling particle. Com-
pared with some algorithms adopted on the proposal
distribution optimization technology, the differences
between proposal distribution optimization and two-

stage prediction and update in the structure are given
in Fig. 1 and Fig.2.

Ome-step One-step Observaticn Chservation
predicticn | T prediction | . | wpdate update
hased on q basedon [~ 4 bkaseden T { basedon
| ¥| Uk “I ukF | pF
maechanism mexchanism mechanism mechanism

Fig.1 The flow of proposal distribution optimization

Ome-siep Dne-step Dhservaticn (Faservation
prediction |t prediction update updare
sased on q basedon | * hasedon + hased on
pr | V| UEF < PRV UKF
mechanizm mechanism mechanism mecharism

Fig.2 The flow of two stages prediction and update

According to the above figures, it is known that
two-stage prediction and update way directly updates
the state estimation not to optimize the single particle
by suboptimal filter, so the increase of calculated
amount is less relative to general PF. In addition, the
situation of update process designed is more back-end
of filter process relative to the proposal distribution op-
timization, so that it can avoid the loss and pollution of

the latest observation and original particle information.

2.3 The algorithm realization of TPF-PWOQO

In the two-stage prediction and update framework
of particle filter, and combined with particle weight op-
timization strategy in multi-sensor observations, the
concrete construction of TPF-PWO is as follows. First-
ly, particles are sampled from proposal distribution by
the prior modeling information, and then particle
weight is calculated by Eq. (10). Hence, one-step
prediction of state and observation can be solved by
x,_; and @},. The process can be considered as one-step
prediction of system state estimation in PF framework.

X, = f(%y) +upy (16)
'i;k/k—l = Z szl(;);;x;; (17)

Tpe = h(x}) (18)
2k/k—1 = Z :vzlé);;zi/kA (19)

where z},,_, denotes one-step prediction of particle ob-
servation. X,,_, and z,,_, denote the one-step predic-
tion of system state and system observation, respective-
ly. In order to construct the filter gain matrix @,, it
needs furthermore to calculate state and observation
prediction covariance P,, and observation prediction co-
variance P .

P.=3 &

lwl.c [x;c - X1 ] [z;.c/k—l — L1 ]T

(20)
N oajri 2 i 2
P, = Zi=1wk|:zk/k—1 - Zoae1 [ Zoaes — Zuat ' +0'§
(21)
®k = sz(Pzz)_l (22)

The construction process of variables including
:Ey,—,_l, Ew__l . #_and P_, can be considered as the
one-step prediction of system state estimation in UKF
framework. 8, can be calculated by Eq. (22} In ad-
dition, considering the improvement of particles degen-
eracy and the promotion of particles utilization efficien-
¢y, re-sampling step is used to realize the observation
update of system state estimation in PF {ramework and
particles set !x{}{!_, after the re-sampling stage are
sampled. According to the Monte Cadoe simulation
technology, the state estimation can be ultimately ob-
tained by the calculation of arithmetic mean of

AN

j=t

X, = ijlx;/N (23)

X = X + 0,(2, - Z4y) (24)
M

= > /M (25)

where x,, denotes the state estimation in PF and the
updated state estimation respectively. On the basis, @,
is used to modify x,, by means of the reasonable utili-
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zation of the latest observation, so the updated state es-
timation is obtained. The modified method based on
Eq. (25) is considered as the observation update of
system state estimation in UKF framework. The algo-
rithm flow of TPF-PWO is expressed by the pseudo-
code, and the concrete algorithm description is as fol-
lows.

® Aitime stepk -1

Suppose we have {x% oL, and ¥, .,

® At time step k

With new observations, zk,m, m =1,2,---,M

Generate particles x_ from the proposal according to Eq. (16)
Calculate the weight &} of particle i using Eq. (6)

Then the one-step prediction X, , of system state, the one-step
prediction of system observation Z,,_, and the filter gain matrix
6, are solved by Eq. (17) to Eq. (22).

The re-sampling step is used to realize the observation update of
system state estimation in PF framework and particles set
{2 },N=1 after the re-sampling stage are sampled.

Finally, the state estimation ¥,, is calculated by Eq. (23) to
Eq. (24).

3 Simulation results and analysis

To illustrate the performance of TPF-FW0, two
examples are given In a simuolation experiment. The
first example includes two typical one-dimensional non-
linear models taken from Refs[15] and[ 4], respec-
tively. The second is a practical moving target tracking
by the observation of two-coordinate radar, which is a
trpical high-dimensional nonlinear estimation problem.
Personal computer iz used as the experiment platform.
CPU { Pentiumd } is with a fast doal-core processor,
and the basic frequency and memory are 3. 06GHZ and
2GB, respectively. Operating System iz Windows XP
and Matlahd. 5 is used as programming software.

3.1 One-dimensional nonlinear examples
Model 1

%, = 0. 5% + sin(0.0dmwk) +1 + 12,
o %45 + Uy, l<sk=<15
e L,.‘,rz ~2+4w,, 15 <k<30
Model 2
xpy = 0.5x, +25[2 (1 + 270 ]

+ Beos(1.2k) +u,
Ty, = 2,/20 +

The evolution parameter of the system state and

m=1,273

the distribution of noise are et In accordance with the
references, and three sensors are used. The first model
is of segmentation nonlinear characteristics. System

noise u, is drawn from Gamma distribution Ga(3,2).

v, 18 subject to Gaussian distribution, and its statisti-
cal characteristics are with N(0,0.005), N(0,0.
002) and N(0,0.01) , respectively. The second is al-
so named as the single variable non-stationary growth
model and is strongly nonlinear. System noise u, is
drawn from Gaussian distribution N(0,10). v, is
subject to Gaussian distribution, and its statistical
characteristics are with N(0,1), N(0,2) and N(O,
1.5), respectively. The number of Monte Carlo simu-
lation is 30 and the number of particles is 1000. And
the total simulation steps are 25, respectively. The six
algorithms are compared in simulation including EKF,
PF, PFMC, EPF, PF-PWO and TPF-PWO.

Fig. 3 and Fig. 4 show the comparison of RMSE on
the state estimation of six algorithms in Monte Carlo
simulation for two models. The data from Table 1
quantitatively show the mean and the variance of RMSE
and the average time. According to Fig. 3 and Table 1,
it is shown that the filter precision of PF and its im-
proved algorithms are superior to EKF in the weak non-
linear and non-Gaussian noise. Due to the reliability
improvement of particle weight and the utilization of
observation in particle sampling process, and TPF-
PWO can obtain better filter precision relative to PF,

L.z T

— EEF
——PF

= PFRIC
—=— EPF

-— PF-FW0
— TPF-Fir(H

nE-

RMESE

Fig.3 The first model

— PF
- = PFMC
i —= EFF
— PF-PW}
— TEF-PWO

10 13 20 25
Sampling steps
Fig.4 The second model
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PFMC, EPF and PF-PWO. According to Fig. 4 and
Table 1, the performance of TPF-PWO is also superior
to other five algorithms in strong nonlinearity and
Gaussian noise. In addition, we find that the filtering
precision and the real-time of EPF are worse than gen-
eral PF. The main reason is that suboptimal filter is
lack of the processing capability for strong nonlineari-
ty. Namely, under the condition of strong nonlinearity,

the adoption of EKF further aggravates the deviation
between the modified proposal distribution and the true
posterior distribution, and weakens the approximation
efficiency of particles relative to true state. Moreover,
compared with PFMC and EPF in real-time, the aug-
ment of computational complexity in TPF-PWO is less
than general PF.

Table 1 The mean and variance of RMSE and the average time based on model 1 and model 2
Algorithm RMSE(Mean) RMSE(Var) Time(s) RMSE(Mean) RMSE(Var) Time(s)
EKF 0.29083 0.09543 -—- 16.343 78.396 -—-
PF 0. 09976 0. 05496 0.5205 5.0448 10.161 0.3292
PFMC 0.14386 0.07271 0.9736 4.8019 7.3386 0.7251
EPF 0.08102 0. 04883 1. 0404 10.146 25.631 1.1828
PF-PWO 0. 05946 0.03410 0.5281 4.2363 7.1767 0.4343
TPF-PWO 0.02745 0. 00091 0.6219 4.2214 6.3391 0.5072

3.2 High-dimensional nonlinear example
The simulation scenario is set to realize the target
tracking in X-Y plane based on the three two-coordinate
radars with different observation accuracy. The target
motion equation and the observations equation are as
follows.
x, =Fx,_ +Tu,_,
Lm =Ly, 61+, m=12.3
wherex, = [x,, %,, ¥4, ¥, denotes system state vec-
tor. x,, x;,, ¥, and y, denote the position component
and velocity component of target state based on the X-

axis direction and the Y-axis direction. F = [‘; g

denotes the system state transition matrix, and A =

o 2= 15

_ [ 0 0 72
e 2 0
ir; denctes the system noise vector which meets zero-
mean Gaussian white noise with the standard deviation
0.15I, and I denotes a hvo dimensional unit matmiz.
¥, ., denotes the ohservations noise vector from three ra-

g] The sampling period 7is 1. I"

T
g] denotes system noise matrix.

dars and is subject to zeros mean Gauvssian white noise

o
process with the standard deviation [T; alr Y =

o
,\i.-"'[:_t,-‘}j' +(y,)% and #, = tan"'{¥./x,) denote the
radial and azimoth component of cbservation. Due to

sensors adopted in observation system being with the
same precision, o) are 0. 2k, 0. 18km and 0. 22km,

and o? are 0.15°, 0.12° and 0. 18°, respectively. In
this case, the number of Monte Carlo simulation is 50

and the number of particles is 2000, and the total sim-
ulation step is 25.

The comparisons of particle weight variance before
the re-sampling and after the re-sampling are given in
Fig. 5 and Fig. 6, respectively. The resulis clearly
show that the stability and reliability of particle weight
variance are improved by the utilization of the weight
optimization strategy in PF-PWO and TPF-PWO. The
comparison of RMSE from the X axis (horizontal direc-
tion) and the Y axis ( vertical direction) are given in
Fig.7 and Fig. 8 under the same conditions, and the
above results further verify the influence of particle
weight improved for the filter precision. According to
Fig. 5 and Fig. 6, we can know that the estimation pre-
cision of target state is also accordingly promoted along
with the diminution of particle weight variance. The
data in Table 2 quantitatively show the mean of RMSE
and the average time for three algorithms.

- TF
. —7- PE-FW1
aos| | — TPFPWI1
Lx)
Z ;
Sl -
g i
z i
El- 4
LF]
= :
aof ¢ . -
q'. 5, T LS . #
""‘e - Tohy FRATTe Ty
u S I L

o
Sarpling steps
Fig.5 Before the re-sampling
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Table 2 The mean of RMSE for position component and
the average time under 50 independent runs

4 Conclusions

The objective of this paper is to deal with reasona-
ble measunng of paricle weight and effective sampling
of particle state in PF for multi-sensor fusion system.
In the concrete construction process of algorithm, first-
Iy, for the influence of random observations noise in
the measuring process of particle weight, we construct
the particle weight optimization strategy. Secondly, for
the improvement of sampling particle reliability, we
give a two siages predietion and update method. More-
over, they are dynamic adopted into the framework of
PF. As expected, the proposed algorithm performs
sood compared with some other existing solutions.
These have been confirmed by the simulations results.
In addition, the algorithm retains the basic stucture of
PF, so it obtains a good scalability. For some specific
nonlinear state estimation problem, some existing im-
proved PF can be easily transplanted into the frame-
work of algorithm proposed. In particular, the applica-
tion ohject of algorithm proposed iz multi-sensor infor-
mation fusion system, and its application fields are
widespread.
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