HIGH TECHNOLOGY LETTERSI Vol. 20 No. 11Mar. 20141pp.9 ~15

doi:10. 3772/j. issn. 1006-6748.2014. 01. 002

Component-based software reliability process simulation
considering imperfect debugging®

Zhang Ce (¥ %)@ ™, Cui Gang”, Bian Yali** , Liu Hongwei "
(* School of Computer Science and Technology, Harbin Institute of technology, Harbin 150001, P. R. China)
(™ School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China)

Abstract
In view of the flaws of component-based software (CBS) reliability modeling and analysis, the

low recognition degree of debugging process, too many assumptions and difficulties in obtaining the

solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and

the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec-

tion and correction process, a CBS integration testing model is sketched by multi-queue multichannel
and finite server queuing model (MMFSQM). Compared with the analytical method based on pa-
rameters and other nonparametric approaches, the simulation approach can relax more of the usual

reliability modeling assumptions and effectively expound integration testing process of CBS. Then,

CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap-

proach is validated to be sound and effective by simulation experiment studies and analysis.
Key words: software reliability growth model (SRGM), component-based software (CBS),
imperfect debugging, reliability simulation, queuing theory

0 Introduction

At present, component-based software (CBS) has
become a kind of mainstream software form, been wide-
ly used in all kinds of mission-critical systems, and its
reliability problems get greater attention. Software relia-
bility can be effectively measured and predicted by soft-
ware reliability growth models (SRGMs) ™).

From the viewpoint of system structure, CBS reli-
ability model can be classified into three broad catego-

. 23
rles[]

: state-based, path-based, and additive mod-
el. Reliability analysis approaches based on architec-
ture will usually involve the following problems :

(1) Ignore much information of the actual soft-
ware development process, e. g., imperfect debug-
ging'*”! | infinite debugging resources, and so on.

(2) Can’t describe the reliability growth with in-
creasing time as conventional existing non-homogene-
ous Poisson process (NHPP) software reliability growth
models.

(3) With the tendency to establish a mathemati-
cal model, often for too many hypothesis, the proposed
model can’ t be solved well by the analytical method

when the research problem becomes complex, resulting

in bigger deviation.
In recent years, using simulation approaches to

791 Simula-

research SRGM has increased gradually
tion approaches to software reliability modeling relaxing
hypothesis conditions of modeling based on analytical
parameter modeling can effectively simulate the sto-
chastic process of software testing, and could be used
to measure and predict application reliability in each
phase of its life cycle. Rate-based simulation (RBS)
research thinks that the biggest difference between the
SRGMs is the diversities of failure rate function
A(£) P21 5o it can be used to describe varied SRGMs
and perform imperfect debugging process analysis. For
instance, the author in Ref. [11] proposed a simula-
tion approach to give perfect debugging of CBS, con-
sidering the limitation of debugging resources, but not
the situation of imperfect debugging. Gokhale also tried
to rely on the simulation to evaluate the CBS reliabili-
ty, a positive practice to simulation analysis of CBS re-
liability'™? | covering the component-level and the ap-
plication-level stochastic testing process simulation,
considering sequence dependent repair and fauli-toler-
ant configuration of critical components. However, due
to the lack of consideration in imperfect debugging and

(@ Supported by the National High Technology Research and Development Program of China (No. 2008 AA01A201) and the National Nature Sci-

ence Foundation of China (No. 60503015, 90818016).

® To whom correspondence should be addressed. E-mail; zhangce@ hitwh. edu. cn

Received on Sep. 18, 2012

10

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1|Mar. 2014

limited debugging resources, the model proposed in
Ref. [13] has a significant gap with the actual situation.
In this paper, we propose an approach of imperfect
debugging of CBS reliability process simulation, which
can describe fault detection process (FDP) and fault
correction process (FCP) of CBS integration testing and
consider the problems of imperfect debugging and debug-
ging resources limitation in the process of debugging.

1 Imperfect debugging MMFSQM

Research into fault debugging activities using the

(93] " and there is a

queuing has increased gradually
corresponding relationship in concepts between the
queuing and SRGMs; Customers<sFaults and Servers
& Debuggers. Considering imperfect debugging, the
faults detected but not allocated debugging resources
will enter the waiting queues, while faults detected will
be repaired and leave the queuing system when debug-
ging resources are idle. Huang'"! utilized finite/infinite
service queuing-perfect/imperfect debugging modeling
approaches to conduct reliability process simulation,
achieving an accurate prediction performance. Howev-
er, the drawback is lack of consideration of the debug-
ging resources limitation. Later, Lin"**' proposed a
single queue multi-service channels model based on the
simulation to illustrate perfect and imperfect debug-
ging, including fault detecting and correcting process.
The approach elaborated the relation of fault detection
and correction profile considering the limitation of de-
bugging resources, but does not apply to the CBS relia-
bility analysis in integration testing.

Actually, infinite service queue is not realistic, as
debugging resources, e.g. , debuggers and testing efforts
are limited in real software testing. Hereon, we present a
multi-quene multichannel and finite server queuing model
(MMFSQM) to sketch the CBS debugging system, and
consider imperfect debugging and finite debugging re-
sources as well, as shown in Fig. 1 below.

;Eﬁhm Crebnpging
Steategy

ol
Mz irmraduction

Fig.1 Multi-quene multichannel and finite server queuing
model considering imperfect debugging

Fig. 1 shows the CBS integration testing based on
its operational profile, which is a grey box testing mod-
el. Faults belonging to component C; enter fault repair
queue FR(Q); according to the fault debugging strategy

(FDS). FCP allocates appropriate debugging resources
to faults to be repaired based on FDS. The debugging re-
sources herein are mainly the debuggers of each queue.
Furthermore, due to the existence of imperfect debug-
ging, there are feedback relations between FDP and FCP.

For the sake of explicit illustration, herein, we
characterize reliability modeling of component C; based
on the G-O model™!.

modeling, we make the following assumption as that of
[4, 8,15]

Considering the simplicity of

many literatures
(1) Let {N,(t), t =0} be a counting process re-
presenting the cumulative failures number of component
C; with the mean value function m;(¢) in the time inter-
val (¢, t + dt).
PiN,(t +dt) =N, (¢t) =0} =1 =X, (2)dt +o(dt)
P{N,(t +dt) =N, (t) =1} = A, (¢)dt + o(dt)
P{N,(¢t +dt) = N,(t) =2} = o(dt)
limo(dt)/dt = 0
&0+

(1)
where A;(z) is the failure intensity of C, at ¢, i. e. , fail-
ure rate in a unit time. Eq. (1) means the failure
probability of C; is approximately A;(¢)dz in a small dz.
In addition, failure occurring at the same time two or
more times is small probability of pieces, which could
be ignored.

(2) Fault detection rate is proportional to the
mean number of remaining faults in system, proportion
functions is b; (t).

(3) Fault correction is not complete, i.e., fault
is repaired successfully with p,(t).

(4) New fault may be introduced, and probability
of introduction is proportional to the number of faulis
detected at ¢, proportion functions is 7,(¢).

According to the assumptions above, the following
differential equations can be derived as

d (2
'”di) b [a(s) -t
de, () dm,(¢;)
Bl L PO AL 2
di P!{ru' dt I: }
daiz,) L g8
de M T

where ¢; is the execubon time of component £, during

integration testing. Eg. {2) boundary conditions for;

m;(0) =0, a;(0) = ay, ¢;(0) = 0. Solving the

above differential equations with the assumption (1)-

(4) yields

) = a,,,fb,(x){l - [-n@)ip@b@],
0

eh Amr(mpb(ndr g

(3)

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1| Mar. 2014

11

/\i(ti) = dmldﬂ

t
(ri(w) = D)p;(u)b;(u)
= @b (t)[l f[~[E=r(e) bir) e]]
(4)
So, fault arrival rate y; of queue FRQ); is
'}’j(ti) = Z &) (1)

VY C;cFRQ;

Z fi(t)a.nbi(ti)

VC;eFRQ;
[1 J*[(ri(u) = 1)p;(u)b;(u)

S REIONXOINOY

o]

where £,(t) is the execution probability of C; in queue
FRQ;. As failure process of each component follows the
NHPP model, the accumulation of more components
failure process follows the same.

Generally speaking, fault correction time follows

71 so let T, be the correction

exponential distribution
time of a debugger in queue FRQ;, then C(z,) can be
given as the distribution function of T, ;
C(t,) =P(T,<t,) =1-€e®%, ¢ >0 (6)
The probability of fault correction in the time in-
terval (., t, + dt) after correction time ¢, is

P(t, <sT,<t, +dt| T, >1t,)

(dC(tC))th
P, sT <t +dt) di, _ d
P(T, >t,) P(T, >t,) = py X G
(7)

So, the repair rate (service rate) of MMFSQM can be
derived as
le(t) _ {kp,j, O0<sk<N (8)
Nu;, N<k
The queue system proposed can be expressed as
M/M/N model with arrival rate and repair rate given by
Egs(5) and (8).
tionary. Considering fault correction probability p,(t)
and fault introduction probability r;(t) , the model pro-
posed can reflect the nature of actual FDP and FCP
more accurately, so arrival rate in Eq. (5) is more
complicated than that in Ref. [11].

Obviously, its birth rate is non-sta-

2 CBS simulation procedure considering
imperfect debugging

According to the meaning of imperfect debugging
and MMFSQM in Section 1, due to non-stationary,
using analytical method based on parameter to conduct
CBS reliability process analysis will become extremely
complicated. Comparatively, simulation approach may
provide more effective measures.

On the assumptions in Section 1, assume that
CBS integration test profile and operational profile are
identical, CBS S consists of n components, each time,
S runs from C, and ends with C, ; the failure probability
of C,(1 <i<n) is the same and S termination can be
< n) and then be
restarted immediately. Pseudo codes of simulation

process CBS _ SIMPRO _ CONIMPDEBUG developed

are shown in Fig.2 below.

triggered by the failures in C,(1 < i

1. CBS_SIMPRO _CONIMPDEBUG (doublo time _limited, double
dt, int debugger[k], double P[n][n], double phi[n][n], double
(*lamda) [n] (double), double mu[n], double exposing _ rate
double introduction _rate) {

while (global _ clock <time _ limited) |

ALLOCATING ;

for (i =0;i <k;i++)]

while((length(C[i]) +length(R[i])) <debugger[i]&&W[i]! =NULL){
newfauls =get _ from _ queue(W(i]); pus _into _ quene(C[i], fault);}}
7. DETECTING .

8. next _ comp = determine _next _ comp(cur _comp, P);

9. whole _ time _ this _ access =get _ whole _ time _ this _ access(cur _ comp,
10: phil cur _comp][next _comp]);

11; while (sime _so _far <whole _time _this _access&&failed! =1) |
12: time _so _far +=dt;local _ clock[cur _ comp] +=dt;global _ clock +=dt;
13, if (occur(ds, lamda[cur _comp] (local _clock[cur _comp])) {

14. new fault _ detected = encapsulate(DETECTED) ;

15, int cur _ queue = correcting _ strategy(cur _ comp) ;

16; if ((length(Cleur _ queue]) +length(R[cur _ queue])) = =debug-
ger[cur _ queue]) {fault _ detected—>state = WAITING; put _ into _ queue
(Wleur _queue],

17: fault _detected) 3}

18; else {fault _ detected—state = CORRECTING;

19. put _into _ queue{ C[cur _ queue] , fault _ detected) }

20: failed =1; whole _fault _ detected + + ; fault _ detected[cur _comp] + +

21; time _so _far=0; this _run[cur _queue] ; break;} }
if(cur _comp= =n) cur _comp=1; else cur _comp =next _ comp;

22 EXPOSURING .

23; for (i=0;i<k;i+ +){

24. while(fault _introduced =get _from _queue(I[i])) |
25

26

if(expose(exposing _rate, dt)) {I[i] =I[i] — fault _introduced ;
if((length(C[i]) +length(R[i])) =
_queue(W[i],

27: fault _introduced) ;
else put _into _ queue(C[i], fault _introduced) 3} }}

=debugger[i]) put _into

28; CORRECTING;
29, for(i=0;i<k;i+ +){
30; if (ehis_run[i]! =1){

31, while(fault =get _from _ queue(R[i])) |

32. if (fault—state = = CORRECTING&&correct(dt, mu[i])) {

33, R[i1=RI[i] ~fault;F[i]1=F[i] +foult sfouk—state = CORRECTED
Sfauli—leaving

34, _ime =global _time;

35, whole _fault _ corrected + + 3fault _ corrected fault—comp]+ +;} |
this_run[1 =03} }

36; INTRODUCING:

37. for (i=0; i<k; i+ +){ if (correct(dt, mu[i]))

38: { if introduce(introduction _rate) {

39, new fault _ introduced =encapsulate(INTRODUCED) ;put _ into _ queue
(I fault _introduced) ; } }}

40. for(i=0;i<k; i+ +){R[i] =R[i] +C[i]; C[i] =NULL;}}

Fig.2 Simulation process—CBS _ SIMPRO _ CONIMPDEBUG

12

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1|Mar. 2014

Considering imperfect debugging and limitation of
debugging resources, simulation procedure accepts the
following input parameters: time _ limited, the upper
limit of total integration test time; di, the duration of
each run time step denoted, and di must be set small
enough. So , at most, one failure occurs at any given
dt, that is, in the time interval (¢, +dt), A () keeps
stable; P[i][j] and phi[i][j]l(l si<sn,l €j <
n) reflect the CBS S operational profiles, which repre-
sent respectively inter-component transition probabili-
ties among the components and mean execution time
proportion of C; that the transition (C;, C;) is taken af-
ter the execution of C;; k denotes the number of queues
which is determined by the debugging strategy; array
debugger| k] means the number of debugger in queue
k;(% lamda)[i] and (# mu) [i] denote failure rate
and repair rate of C; respectively. Introduction _ rate
and exposing _ rate are fault introduction rate and de-
tection rate.

CBS _ SIMPRO _ CONIMPDEBUG is composed of
5 parts;

(1) ALLOCATING: W[i] records the number of
faults detected but not repaired. Fault is taken out or-
derly from W[i] and put into C[i] which keeps the
faults allocated idle and available debuggers in the cur-
rent time step, if the present debuggers of queue i are
idle and W[i] is not null.

(2) DETECTING: This part corresponding to the
faults detection based on the operational profile of CBS
S is to determine whether a new fault occurs during the
current component execution and to decide how to deal
with the detected fault according to the present debug-
ging resources. Four terms are of particular interest
here: (D Firstly, get the execution time whole _ time _
this __access of current component (cur _ comp) and
next component next _comp that will execute; @ For
the fault detected, determine the queue cur _ queue to
which fault belongs, and decide the debuggers of cur _
queue whether are idle or not, if there are available de-
bugger the detected fault is put into W[i] else C[i].
(@ Update the counting variables; (4) Hereon, utilize
pecurl | fiunction to determine whether a fault is detec-
ted br companng a random number = in (0,1) with A,
{3 dt of cument mmpﬂnent[g"ﬁ] sifx < A {¢)de, then
a fanlt is detected.

{33 CORRECTING . This part accomplishes cor-
rection of the detected fault. I} Considering the prem-
ise of imperfect debugging, the fault detected in cur-
rent time step df can 't be repaired instantly, the faults
detected in previous time step can only be repaired.
So, in DETECTING part, this _
marked for this intention, and judged in this step; @

run[i] variable is

Array R[i] records the faults to which debugging re-
sources are allocated in the current step before, F[i]
stores the corrected faults; @ Implementation method
of fault correction and detection process is identical ,
i. e. , using correct() function.

(4) INTRODUCING: This part mainly handles
this situation of introducing new faulis in the process of
imperfect debugging. (D As the precondition of intro-
ducing new faults is successful fault correction in COR-
RECTING part, correct() is used to determine whether
the fault is corrected or not; @ Using introduce() to
decide the new introduced fault. introduce() and cor-
rect() are realized in the same method, that is, judge
random number x < introduction _rate; (3) The intro-
duced faults are put into I[i].

(5) EXPOSURING ; This part detects and proces-
ses the faults introduced in the previous di, so we need
to determine whether I[i] is null or not. () Detection
rate of inherent faults in system and that of new intro-
duced faults are different, so expose() is used to real-
ize this function other than occur () in DETECTING
part; @ When expose() is ture and debuggers are a-
vailable then fault _ introduced is put into W[i] else
cli].

By the analysis above, fault _ introduced will
move complying with the following processes: fault _
introduced—I[i] >W[i]—>C[i]—>R[i]—>F[i],
which is the most complete process of dealing with new
introduced faults.

3 Simulation and validation

In this section, experimental studies are conduc-
ted and the potential of the simulation procedures de-
veloped in Section 1 through the CBS reported in
Ref. [16] are demonstrated, which has been widely
used to illustrate structure-based reliability process as-
sessment techniques in recent years[n’ Bl Fig. 3 pres-
ents the structure of the CBS application and Table 1

shows transition probabilities among the components.

Fig.3 Structure of the component-based software application

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1| Mar. 2014

13

Table 1 Transition probabilities among the components
P,,=0.60 P,,=0.20 P, ,=0.20 P,,=0.70 P,;=0.30
P,;=1.00 P,,=0.40 P,,=0.60 P,,=0.40 P,,=0.60
P;,=0.30 P,,=0.30 P,;=0.10 P,,=0.30 P,,=0.50
P, =0.50 Py, =0.25 P;,,=0.75 Py 3 =0.10 P, ,, =0.90

In consideration of imperfect debugging, compo-
nents in Fig. 3 are represented by Eq. (2). Since there
are no unit testing failure data of C;(1 < i < n), pa-
rameters of A;(¢;) can’t be estimated. The main fea-
ture of interest here is integration testing process, so
component C;(1 < i < n) can be set to meet research
requirements; a; = 35. 14, b, = 0. 0086. Repair rate
is a result of multiple factors including debugger profi-
ciency, testing environment and other factors, and is
unable to be accurately estimated, so is set u[j] =
0. 035. Degree of imperfect debugging is determined by

fault introduction rate, without loss of generality, here
set introduction _ rate = 0. 15 and exposing _ rate =
0.035. Ref. [13] has concluded that C; and C; are
critical components, and that as a result the following
strategy is employed: set three correction queues,
FRQ, .FRQ, and FRQ,, faulis detected in C, and C;
are put into FRQ, and FRQ, respectively, the other
faults of components into FRQ,. It is assumed that the
simulation procedure executes 5,000 time units and
spends 1. 00 time unit in each component per visit.
The simulation procedure CBS _ SIMPRO CONIMP-
DEBUG was executed 1,000 times and an average as
statistical data of the profile obtained during each run
was computed.

The fault profile of each queue is analyzed at
first. Considering imperfect debugging, Fig.4 shows
the fault profiles of FRQ, . FRQ, and FRQ, including

50 sa - LU
a £ 3
EREL = & = B :
— =
— = = u
= [z o
ERE ; = 3 6 :
E Y g 3
= g £ - el
O B = = s e = S
— g e = ~ e o
o o =3 A et o
o P = v A _
2 14 2 ¥ 2 ;A A oo
E 8 E B E mese
= od Z Z ¥ ae o

0 LRG0 2000 300G 4400 30 (] OGS 2004 3000 2000 3000 iq 1000 2000 3000 4000 Z00CH
Time Time Time

(al Faull detection of FRO

(b1 Fault comection of SR

1c1 Fault introduction of FREOY

5 k] it
2 z 3
S s g =3
EE = s
T 3 5 3
z <] 2
= g B
< ag > B=]
= -r et e
> [=] o
ERE g F
E] =l]
S Z z

0 LG 2000 3000 4400 5024 0 IR 2060 3000 2000 5000

Time

[d> Fault detection of FRO.

(&) Fault correction of FRO:

Time

of1 Faull introduction of FROy

Time

]

Numher of detected fanlrs

Number ol corrected laults

MNumber of introduced faulta

T 100 2000 3OBD 4000 3000
Time
[z Fault detection of FRO;

1000 2000 3000 2000 S0 ‘[

{h Fault correctior of FEO,

100 200 3990 2000 =000
Time

(it Faul: introduction of FRO,

Time

—— Dzku
—F&— Dzku

| 2
| B2CT=
| zacr

= Dzbugger=2 —&—— Debugger=4
=7 —+—— Diebugger=8 —<— Dcbug

Fig.4 Fauli profiles of FRQ,, FRQ, and FRQ,

14

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1|Mar. 2014

fault detection profile, correction profile and introduc-
tion profile, particularly, the detected or corrected
faults encompass inherent faults in application and
newly introduced faults. As can be seen from (b),
(e) and (h), the number of faults corrected and the
number of debuggers is the positive relation, i. e. , the
detected fault can be more corrected as the number of
debugger increases in a continuous time slice. Mean-
while, looking at (a).(d) and (g), there has also
been a same positive relation in the number of detected
faults and debuggers, mainly due to the existence of
fault introduction rate. Considering imperfect debug-
ging, the increasing debuggers cause the growth of the
number of corrected and introduced fault, and ulti-
mately causes the growth of number of detected faults.
As we can see from Fig. 4, fault correction pro-
files of FRQ,.FRQ, and FR(Q, lag behind detection
profiles with the tendency of remaining a wide gap at
the initial and narrowed or overlapped at last. In CBS _
SIMPRO _ CONIMPDEBUG, in order to satisfy the as-
sumption of considering imperfect debugging, variable
of this _run[i] needs to be judged in the CORRECT-
ING part, so the faults only detected in a previous time
step df can be corrected, leading to hysteresis phenom-
enon. It is tally with the actual situation: due to exist-
ence of correction time, faults newly detected can’ t be
corrected instantaneously, debuggers can only correct
faults detected formerly, and the number of detected
faults is more than that of corrected faults. In particu-
lar, if debugging personnel allocation is reasonable,
then all faults detected will be completely corrected.
Besides that, due to imperfect debugging, new
faults can be introduced as the testing. In Fig.4(¢),
(f) and (i), note that the number of new introduced
faults is positively correlated to the number of debug-
gers. It is easy to understand that the more debuggers

the more corrected faults, causing more introduced
faults. Table 2 summarizes the correspondence between
the number of introduced faulis in FRQ,, FRQ, and
FRQ; and the number of debuggers. The numbers of
the new introduced faults are 5, 6 and 36 respectively
which are the result of current inéroduction rate =
0.15. For other settings, simulation results also reflect
the same positively relation and limitations of space, so
that won’t be covered again here.

Table 2 Number of fault introduced in FRQ,, FRQ, and FRQ,
Number of debuggers

FRQ;

2 4 6 7 8 9 11 13 15
FRQ, 2 4 5 — 5 — — — —
FR, 3 4 6 — 6 — — — —
FRQ, — — — 22 — 25 26 33 36

Next, to illustrate the effect of debuggers’ number
allocation on simulation result, Fig.5 depicts the rela-
tionship between faults in waiting queue of FRQ, .
FRQ, and FR(Q, and debuggers. It’ s obvious, the
number of remaining faults in waiting queue can reflect
whether debugging staffing is reasonable or not. As can
be seen from the Fig. 5, with the increasing of debug-
gers, the number of faults in waiting queues has since
been falling steadily. For FRQ, , when the debugging
staffing expands to 6 persons, there are no faults in
waiting queue. This means that 6 debuggers can meet
debugging requirements, i.e., the correction profile
can be appropriate to the detection profile and addition-
al number of debuggers will not have significant effect
on debugging throughput rate and efficiency. Likewise,
the number of debugger of FR(Q, is also 6. By contrast,
simulation results from Fig. 6 (¢) shows that it is 13
persons needed for FRQ, , which can be interpreted as,

(2
=

20

|

10

207

W LA
2500 3000 4605 SH0
Time

o LM

Numbher of faults in waiting queus

Number of faylts in waiting queue

{a) Open-remaining fault of FRO,

O 10007 2204 3000 245323 SCO0
Time

b} Open-remaining faull af E/ 0

O 1000 200G 300G 4000 5000
Time

Number of faults in waiting queuc

[c) Oper-remainicg fau't of FRO,

—&—— Debupgger=2 ——&— Dehu

——— Debuggar=7

Fig.5 Open-remaining fault profile

HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1| Mar. 2014

15

FRQ, contains 8 components and has the maximum in-
herent faults together with newly introduced faults. The
number of debugger given here is just the minimum,
due to considering imperfect debugging, i. e. , the fault
correction probability is not 100% and fault introduc-
tion rate is not 0.

In accordance with the resulis of simulation exper-
iment, CBS _ SIMPRO _ CONIMPDEBUG simulation
procedure conducts the CBS integration testing process
reliability analysis effectively, and describes imperfect
debugging activities accurately covering the whole of
fault detection, correction, introduction and explosion.
In particular, in a practical application, software engi-
neer can model and simulate CBS testing process with
proper parameters, evaluate and predict CBS reliabili-
ty, and determine an optimal allocation strategy of tes-
ting resources based on assistant supports provided by
simulation procedures.

4 Conclusions

The major contribution of this paper is that we
present an approach of CBS reliability simulation that
elaborates the effect of imperfect debugging on FDP
and FCP, and illustrates intrinsic relations between im-
perfect debugging and the number of debuggers. Com-
pared with the approaches available, the proposed ap-
proach sketches CBS testing process by MMFSQM and
takes account of the limitation of debugging resources.
The experimental studies and results indicate that the
proposed simulation approach is feasible. The simula-
tion procedures can help software engineers gain an in-
sight into the characteristics of CBS reliability and per-
form reasonable adjustment of debugging resources &
decision support to achieve a maximum level of relia-
bility in a cost-effective manner. In reality, debugging
resources cover not only the debuggers, but also CPU
hours, imperfect debugging has a big effect on residual
faults and the imperative testing cost control. Besides,
explicitly incorporate operational profile and changea-
ble structure into CBS reliability modeling and analy-
sis, and further research on these topics would be
worthwhile.

References

[1] Almering V, van Genuchten M, Cloudt G, et al. Using
software reliability growth models in practice. IEEE Sofi-
ware, 2007, 24(6) : 82-88

[2] Gokhale S S. Architecture-based software reliability anal-
ysis overview and limitations. IEEE Transactions on De-
pendable and Secure Computing, 2007, 4(1): 3240

[3] Gokhale S S. Analytical models for architecture-based

software reliability prediction-a unification framework.

IEEE Transactions on Reliability, 2006, 55(4) : 578-590

[4] Kapur PK, Pham H, Anand S, et al. A unified approach
for developing software reliability growth models in the
presence of imperfect debugging and error generation.
IEEE Transactions on Reliability, 2011, 60(1) : 331-340

[5] WuYP, Hu Q P, Xie M, et al. Modeling and analysis
of software fault detection and correction process by con-
sidering time dependency. IEEE Transactions on Reliabil-
ity, 2007, 56(4) : 629-642

[6] HuCY, Cui G, Lin H W, et al. A hybrid queueing
model with imperfect debugging for component software
reliability analysis. Intelligent Automation and Soft Com-
puting, 2011, 17(5) . 559-570

[7] Huang C Y, Huang W C. Software reliability analysis and
measurement using finite and infinite server queueing
models. IEEE Transactions on Reliability, 2008, 57(1) :
192203

[8] Lin C T. Analyzing the effect of imperfect debugging on
software fault detection on software fault detection and
correction processes via a simulation work. Mathematical
and Computer Modeling , 2011, 54 3046-3064

[9] Lin C T, Huang C Y. Staffing level and cost analyses for
software debugging activities through rate-based simula-
tion approaches. IEEE Transactions on Reliability, 2009,
58(4) . 711-724

[10] Gokhale S S, Lyu M R, Trivedi K S. Incorporating fault
debugging activities into software reliability models- A
simulation approach. IEEE Transactions on Reliability,
2006, 55(2) . 281292

[11] Hou CY, Cui G, Liu H W. Rate-based component soft-
ware reliability process simulation. Journal of Software,
2011, 22(11) ; 2749-2759

[12] Lin C T, Huang C Y, Sue C C. Measuring and assessing
software reliability growth through simulation-based ap-
proaches. In: Proceedings of the 31st Annual Internation-
al Computer Software and Applications Conference, Bei-
jing, China, 2007. 439448

[13] Gokhale S S, Michael Rung-Tsong Lyn. A simulation ap-
proach to structure-based software reliability analysis.
IEEE Transactions on Software Engineering, 2005, 31
(8): 643656

[14] Goel A L, Okumoto K. Time-dependent error-detection
rate model for software reliability and other performance
measures. IEEE Transactions on Reliability, 1979, R-28
(3):206-211

[15] Xie M, Yang B. A study of the effect of imperfect debug-
ging on software development cost. IEEE Transactions on
Software Engineering, 2003, 29(5) : 471473

[16] Cheung R C. A user-oriented software reliability model.
IEEE Transactions on Software Engineering, 1980, SE-6
(2):118-125

Zhang Ce, born in 1978, received his Bachelor
and Master degrees of computer science and technology
from Harbin Institute of Technology (HIT) and North-
east University (NEU), China in 2002 and 2005, re-
spectively. He has been a Ph. D. candidate of HIT
major in computer system structure since 2010. His re-
search interests include software reliability modeling
and Trusted Computing (TC).

