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Abstract

Two utility-optimization dynamic subcarrier allocation (DSA) algorithms are designed for single
carrier frequency division multiple access system (SC-FDMA). The two proposed algorithms aim to
support diverse transmission capacity requirements in wireless networks, which consider both the
channel state information (CSI) and the capacity requirements of each user by setting appropriate
utility functions. Simulation results show that with considerable lower computational complexity, the
first utility-optimization algorithm can meet the system capacity requirements of each user effectively.
However, the rate-sum capacity performance is poor. Furthermore, the second proposed utility-opti-
mization algorithm can coniribute a better trade-off between system rate-sum capacity requirement
and the capacity requirements of each user by introducing the signal to noise ratio (SNR) informa-
tion to the utility function based on the first utility-optimization algorithm, which can improve the us-
er requirements processing capability as well as achieve a better sum-rate capacity.

Key words: single carrier frequency division multiple access ( SC-FDMA) , dynamic subcarri-
er allocation (DSA), utility function, transmission capacity requirements, utility-optimization algo-
rithm, greedy algorithm, proportional fair algorithm

0 Introduction

Single carrier frequency division multiple access
(SC-FDMA ) is proposed as a modified version of or-
thogonal frequency division multiple access ( OFDMA )
with similar transmission performance and overall com-
plexity, which brings additional benefit of low peak-to-
average power ratio (PAPR) and makes it suitable for
uplink transmission by user-terminals. Therefore, SC-
FDMA is more applicable for the high speed data serv-
ices in the uplink with strictly limited transmit power.
At present, SC-FDMA has been considered as an alter-
native multiple access technology to OFDMA in the 3rd
generation partnership project long term evolution
(3GPP LTE) for uplink data transmission''?!.

Dynamic subcarrier allocation (DSA) is a kind of
channel-aware scheduling, which performs frequency
resource allocation based on the channel state informa-
tion (CSI) observed by the base station. Due to the
time-varying and mutually independent feature of wire-
less multi-path channel, the channel frequency re-
sponse for different users and different subcarriers are

almost uncorrelated. Therefore, a subcarrier for one
user is in deep fading, but may be in good channel
condition for other users, which can be referred to as
the frequency selective nature of wireless channel. The
key idea of DSA is to assign subcarriers to mobile ter-
minals with favorable transmission characteristics. DSA
scheduling takes the advantage of both the frequency
selective nature and the system multiuser diversity to
effectively relieve the pressure of scarce wireless re-
sources caused by the increasing access demands of us-
ers in wireless networks’>**1. Furthermore, DSA can
also be a kind of service-oriented method to support
different quality of service (QoS) by considering prac-
tical transmission requirements. For these reasons,
DSA has been widely studied and applied in the uplink
and downlink LTE systems. Traditional DSA algo-
rithms, for example, the greedy algorithm'®' | propor-
tional fair algorithm'®
perform dynamic allocation based on the CSI of the

and max-min algorithm'”! all

physical layer, and compared with the static subcarrier
allocation strategies such as round robin (RR) algo-
rithm it can improve the spectral efficiency thereby en-
hancing system transmission performance. However,
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they all aim at optimizing the system rate-sum capacity
or allocation fairness performance without considering
practical transmission requirements in system. There-
fore, the channel resource cannot be fully exploited for
servicing each access user respectively, that means the
allocation utility is low. In Ref. [8 ], a proportional
rate constraint algorithm is proposed, which performs
DSA subject to the predetermined allocation con-
straints. The proportional rate constraint algorithm can
be considered as a kind of service-oriented algorithm
by setting appropriate allocation constraints according
to the transmission requirements of each user. Howev-
er, the constraint-based allocation only takes effect in
the special case when the number of subcarriers is lar-
ger than the number of users, therefore, the enhance-
ment of allocation utility is definite and limited.

In order to overcome this drawback and further
improve the allocation utility, two utility-optimization
algorithms are proposed for meeting the service require-
ments of each access user in the SC-FDMA system.
Both the two proposed utility-optimization algorithms
take the advantage of the utility pricing structure to
evaluate the CSI and transmission capacity require-
ments of each user at the same time. Therefore, the
channel resource can be fully used for guaranteeing the
gystem rate-sum capacity as well as satisfying the prac-
tical capacity demands of each user.

1 System model

Fig. 1 illustrates the DSA procedure of an uplink
SC-FDMA system. Before allocation, the base station
acquires CSI and transmission requirements of each us-
er, and then decides appropriate allocation strategies
according to the acquired information. Finally, the
corresponding DSA schemes are transmitted to the mo-
bile terminals via downlink control signals. In a practi-
cal SC-FDMA system, subcarriers have to be assigned
in the form of “chunk” rather than individually, where
each chunk consists of a subset of subcarriers and the
number of subcarriers in each chunk is regarded as the
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Fig.1 SC-FDMA system DSA block diagram

minimum unit for each allocation. In this paper, the
DSA algorithm applied in localized-FDMA ( L-FDMA)
system is considered with the allocation constrains that
each user can get one or more than one chunks, while
each chunk can be only assigned to one user during
one transmission time interval (TTI)[*.

In this paper, a SC-FDMA system with K termi-
nals, L subcarriers and N chunks is considered, so
each chunk consists of M = L/N subcarriers. The sys-
tem adopts equal bit equal power ( EBEP) allocation
for each chunk™®!. Since SC-FDMA is a type of single
carrier modulation technology which may suffer from
the inter-symbol interference (ISI), the minimum
mean square error ( MMSE) frequency domain equali-
zation is implemented in order to combat ISI'™. Let
1, denote the set of chunks allocated to user k£, and
| I, | represents the number of subcarriers assigned
to user k, the signal to noise ratio (SNR) value of each
user with MMSE equalization can be given by

1 -1

'}’k(Pk 7Ich,k) = 1 Vi1 1

lE’sub,k yk:l + 1

Ty |
(1)
where y, , = P x H,t,l/a'? is the SNR of subcarrier [
for user k, o7 is the noise power of subcarrier [, H, ,is
the channel gain of subcarrier [ for user k, P, and P{™
are the total power and the transmit power assigned to

each subcarrier of user £, respectively.
Using Shannon’ s formula, the capacity of user &

is

B x|l I,;,|

Ck(PI”Ich,k) = N

xlog,[1 +v,(P,,1,,) ]
(2)

Hence, the rate-sum capacity of the SC-FDMA system
can be computed as

K
C.sum = kz_lck(Plnlch,k) (3)

2 Utility-optimization algorithm

Communication networks introduce the utility the-
ory 0 evaluate the capability that system satisfies the
Further-

more, the benefit of wsing certain svstem resources for

transmission requirements of access users.

practical transmission services can be measured by rak-
ing the advantage of wility function ™. The basic
idea of utilitr-optimization-based DSA scheduling is o
map transmission requirements into the eomesponding
wtility. Based on this structure, the system can handle
multiple types of traffic in wireless networks by maximi-
zing the aggregate utility with respect to the service re-
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quirements of each access user'". In this paper, four
kinds of best effort traffics with different capacity re-
quirements in Rarleigh channel environment are con-
sidered. Daring the allocation procedure, the schedu-
ler evaluates hoth C8] and ransmission requirements of
each user by seiing appropnate utility function. Thos,
the chammel resvurce can be fully exploited for guaran-
teeing diverse capacity demands. The objective func-
tion of the utlity-optimization algorithm is

K

max 3" B (67%,C,) 4)

iol
where U7; is the utility function of uwser &, ;7 is the
transmission capacity demand of user &.

2.1 The first utility-optimization algorithm

The first utility-optimization algorithm aims at sat-
isfying the transmission requirements of each user in
the svstem, which provides higher allocation priomty
for the access wser with higher transmission capacity
demand while in poor channel quality condition. Ac-
cording to the wtility theory, the allocation priority in
DSA scheduling depends on its comesponding wtility
function. Spectlically, high wility implies high prion-
ty; otherwise the priority is low. It is assumed that the
utility fumection £, of the {irst utilitv-optimization algo-
mthm for cach user is proportional o its capacity de-
mand while inversely proportional to its average chan-
nel capacity;

cr
Uk = k

= (5)

where C;”” is the average capacity of userk, I, is the

set of all the chunks in the system.

€ = X C(Py L), b € Ly (6)
Y

As shown in Eq. (2), the channel capacity of
each user increases with its SNR. For simplifying the
allocation procedure, the average capacity of user k is

measured by its average SNR as shown in Eq. (7).
aver 1
Ve T X V(P L) ko€ L (7)

A
Hence, the utility function of the first utility-opti-
mization algorithm can be simplified as
Cc*
U, = ak,,e, (8)

Vi
The allocation procedure of the first utility-optimi-

zation algorithm is formulated in Fig.2, where I =
{1,2,- K} and I'** = {1,2,---,K} are the set of all
users and the set of users with unsatisfied capacity re-
quirements, respectively, I, ., = {1,2,--- N} con-

sists of all the available chunks.
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Fig.2 Flow chart of the first utility-optimization algorithm

In order to achieve the objective of maximizing the
total utility, the scheduler finds the user with the maxi-
mum utility during iterations, and then allocates the
chunk which is in the best channel condition to that us-
er. Thus, the channel resource can be fully exploited
for supporting diverse capacity requirements.

2.2 The second utility-optimization algorithm

In some cases, the first utility-optimization algo-
rithm has to allocate chunks to the users in poor chan-
nel condition in order to satisfy capacity demands of
each user. That means the enhancement of user re-
quirements processing capability is at the expense of
the system capacity, therefore, it is not applicable for
the transmission system with strict capacity require-
ments. For further improving allocation performance,
the second utility-optimization algorithm is proposed by
introducing SNR information based on the utility func-
tion of the first utility-optimization algorithm. The mod-
ified utility function can effectively enhance the user
requirements processing capability by taking fully use
of CSI during allocation, and at the same time provide
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higher allocation priority for the users in better channel
condition, thereby achieving a better trade-off between
system rate-sum capacity requirement and capacity de-
mands of each user. The utility function of the second
utility-optimization algorithm is given by

!
Uk,n. = yk,n X akyer (9)

k
where U, , is the utility function of user & for chunk n.

The allocation blow chart of the second utility-op-
timization algorithm is shown in Fig.3. As shown in

the figure, the scheduler of the second utility-optimiza-
tion algorithm finds the pair of user and chunk with the
maximum utility instead of only considering the user
utility during allocation iterations.
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Fig.3 Flow chart of the second utility-optimization algorithm
3 Computational complexity analysis

In this section, the computational complexity of
all the considered DSA algorithms is analyzed.

3.1 Theoretical complexity analysis

Firstly, the theoretical complexity of the proposed
algorithms in terms of the number of calculations is
measured. For the SC-FDMA system with K users and
N chunks, it is assumed that in each iteration the num-

ber of available chunks in 1, is n, and the number of
users in [ is k. When K < N, the first utility-optimi-
zation algorithm calculates the utility of each user and
finds the user with the highest utility by taking & + & —
1 operations. Then the available chunk with the highest
SNR is assigned to that user, which needs n — 1 com-
parisons. After that, the scheduler detects whether the
capacity requirement of that user is satisfied and up-
dates the C;* and I according to the comparison re-
sults. Since the following allocation process depends on
the state of I, and I'" which is unpredictable. The
theoretical complexity of the proposed algorithms is
measured by the maximum number of computational
operations. On this condition, a special case is consid-
ered that the capacity requirements of users are alwavs
unsatisfied, and all the nsers need 1o participate in the
next round of allocation. That means the number of us-
ers in £77 is unchanged as K. Furthermore, as the allo-
cation constraints demand that each chunk can only be
assigned to one user during each TT1, the number of
available chunks in 7, keep on decreasing as the allo-
cation goes on. In consequence, the theoreical com-
plexity of the first utilityoplimization algorithm is given
o
br > [K+{K-1)+{n-1) +4] = 2._.1-'K+%

n=1
+ 58, When K = N, the system chunks are inade-
gquate for servicing all the users and I will nat be

{ K

emply. Thus, the theoretical complexity of the first
5

utility-optimization algorithm is given by > [K+ (K -
n=1

1) +(n=1) -2] = 28K + (N +N).

Similarly , the theoretical complexity of the second
utility-cptimization algorithm can also be obtained. Mo-
reover, the theoretical complexity of the proportional
rate constraint algorithm and the greedy algorithm is
summarized in Ref. [15]. Table 1 presents the theo-
retical complexity of all the considered DSA algorithms
in this paper. Apparently, for the practical SC-FDMA

Table 1 Theoretical complexity for DSA algorithms
Algorithm Computational complexity
. The first K < N:2NK + (W +5N)/2
utility-optimization K= NINK + (N + Ny/2
algorithm = (N + )
_ The second K < N:(V +2N)K +3N
utility-optimization K= N (M + K + N
algorithm =N:(N +20)K +

(N* +11N)K/2 - 2N
K<N:{(K +K) 2+ (N -3N)2
K=N:.(M +N)K?2-N

Greedy algorithm

Proportional rate
constraint algorithm
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system, when the number of chunks N is constant, all
the DSA algorithms in Table 1 have linear complexity
which increases with the number of user K, except the
proportional rate constraint algorithm when K < N.

3.2 Actual computation time analysis

The actual computation time of all the considered
algorithms is derived by simulation in order to further
demonstrate the former theoretical analysis. As men-
tioned above, the theoretical complexity of the pro-
posed two utility-optimization algorithms are measured
by the maximum number of computation operations. In
practice, the number of users in I?*_ will decrease dur-
ing the iteration process, therefore, the actual compu-
tation time is much lower than the theoretical results.
As shown in Fig. 4, with the increasing number of us-
ers, all the considered DSA algorithms have linear
complexity except the proportional rate constraint algo-
rithm in the scenario when K < N. Furthermore, the
first utility-optimization algorithm has the lowest com-
putational complexity, and the complexity of the sec-
ond utility-optimization algorithm is higher than the first
one but significantly lower than the greedy algorithm.
That is because the second algorithm introduces the
SNR information of each chunk to the utility function.
During allocation, the modified utility function needs to
be calculated for not only all the users, but also for all
the pairs of users and chunks. In addition, the search
space for allocation is also extended.
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Fig.4 Actual computation time
4 Simulation results and analysis

In this section, the performance of the two pro-
posed utility-optimization algorithms is compared with
the greedy algorithm, the proportional rate constraint
algorithm and the RR algorithm in terms of three as-
pects: user requirements processing capability, rate-
sum capacity and system average bit error rate (BER).

Four kinds of best effort applications with different
capacity requirements are considered. The parameters
of the considered traffic are shown in Table 2. The
wireless channel is modeled as the ITU-R vehicular
channel model A with 6 paths described in Table 3.
As a kind of typical multipath channel model, the ve-
hicular channel has long multipath delay, which will
cause severe frequency selectivity in the frequency do-
main; while on the other hand, provide high flexible
for the DSA scheduling based on the frequency selec-
tivity nature of wireless channel. It is assumed that the
base station has perfectly acquired the CSI of all the
terminals in each TTI, and the channel state estimation
as well as the allocation scheme transmission is instan-
taneous without considering the DSA feedback delay.
The system parameters assumed in our analysis are
shown in Table 4.

Table 2 Transmission capacity requirements

Type Capacity demands( Mbps) Ratio (% )
1 0.25 20
2 0.5 40
3 1.0 30
4 1.5 10

Table 3 ITU-R Vehicular channel model A, with 6 paths

Tap Relative delay  Average Power Doppler

(ns) (dB) Spectrum
1 0 0.0 Classic
2 310 -1.0 Classic
3 710 -5.0 Classic
4 1080 —-10.40 Classic
5 1730 -15.0 Classic
6 2510 -.0 Classic

Takle 4 Simulation parameters for SC-FDMA svstem

Syslem parameters ¥alues
Total available bandwidth { MHz) 5
System sampling rate { ns) 200k
Number of subearriers { L) 512
Number of chunks { &) 32
Cyclic prefix length (us) 4
Total transmit power ( W) 1
Radio frequency carrier ( GHz) 2
System rate-sum capacity ( Mbps) 20
Modulation method QPSK
Equalization scheme MMSE
Average SNR (dB) 14
Maximum SNR ( dB) 28
AWGN power speciral density (dB + W/Hz) -80
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In Fig.5, the performance of user requirements
processing capability for all the considered algorithms
is evaluated in terms of the number of users meeting
their corresponding capacity demands in the system.
The total number of users in the system ranges from 4
to 128. As shown in the figure, the greedy algorithm
and the RR algorithm perform allocation without con-
sidering the practical fransmission requirements.
Therefore,, with the increasing number of users, the ca-
pacity demands of most users cannot be satisfied. On
the other hand, the proportional rate constraint algo-
rithm can perform service-oriented allocation by setting
appropriate allocation constraints according to the user
capacity demands. However, the constraint-based allo-
cation takes effect only after allocating one chunk to
each user in system based on the concept of greedy al-
gorithm. That means the available channel resource for
the service-oriented allocation is limited, therefore the
enhancement of allocation utility is limited. The two
proposed utility-optimization algorithms consider both
the CSI and transmission capacity requirements of each
user at the same time. It can be observed that the user
requirements processing capability of the first utility-
optimization algorithm is significantly better than the
greedy algorithm, the proportional rate constraint algo-
rithm and the RR algorithm, especially when the num-
ber of users in system exceeds the number of chunks.
That is because the utility function of the first utility-
optimization algorithm takes user capacity requirements
into account. And during the allocation procedures,
the scheduler keeps on detecting whether the capacity
requirements of each user are satisfied. If not, the un-
satisfied user will participate in the next allocation itera-
tion until being satisfied, or there is no available chunk
in I, . Moreover, the second utility-optimization
algorithm shows better user requirements processing
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capability than the first algorithm by introducing SNR
information to the utility function. During the alloca-
tion, the scheduler assigns appropriate allocation prior-
ities to each user by evaluating the utilities based on
both the SNR information and user requirements.
Therefore, CSI and channel resource can be fully ex-
ploited for serving the user capacity requirements, so
as to achieve a further improvement of the user require-
ments processing capability.

Fig. 6 illustrates the rate-sum capacity perform-
ance of all the considered algorithms with the total
number of users in the system ranging from 4 to 128.
As shown in the figure, the greedy algorithm aims to
maximize the system capacity, which searches for the
user with the best CSI during allocation procedure.
Therefore, a better rate-sum capacity performance can
be achieved by the greedy algorithm, whereas the user
requirements processing capability is poor. During the
allocation, the first utility-optimization algorithm pro-
vides higher allocation priorities for the access users
with higher transmission capacity demands. However,
the utility function of the first utility-optimization algo-
rithm does not consider the current SNR of each
chunk; thus, the channel resource will be allocated to
the users in poor channel quality condition. As shown
in Figs 5 and 6, the first utility-optimization algorithm
has better user requirements processing capability com-
pared to the greedy algorithm, but its rate-sum capacity
is low. Therefore, the enhancement of user require-
ments processing capability in the first utility-optimiza-
tion algorithm is achieved at the expense of the system
capacity performance. Furthermore, the second utility-
optimization algorithm calculates allocation utilities
based on the capacity requirements as well as the cur-
rent SNR, thereby providing higher priorities for the

£

[}
L

=

ity (Mbps)
]

T T A

F
Ol =
Z 15
z

FZA Ilifbai;;'algn.]r%ﬂ:m

Proporianzal rate cocstraint algorithne

E—= The first uniliby-optirizticr algerithe b

5E The secrod uliny-cptimizaion algeddr

[CTT RE alpesitar

8 16 32 B 128
MNumber of users

= ta
LE i

&

Swshemn rate-sum capaeity



HIGH TECHNOLOGY LETTERSI Vol. 20 No. 1| Mar. 2014

users in good channel condition. Thus, appropriate al-
location priorities can be derived for system users.
Based on this concept, the second utility-optimization
algorithm can achieve higher frequency efficiency by
avoiding allocating chunks to the user in poor channel
condition. As shown in Figs 5 and 6, the second utili-
ty-optimization algorithm achieves significantly im-
provement in the system capacity compared to the first
utility-optimization algorithm, and maintains excellent
user requirements processing capability at the same
time.

The transmission reliability performance of all the
considered algorithms is shown in Fig. 7 in terms of the
average BER with K = 16. As shown in the figure,
BER of the two proposed utility-optimization algorithms
is higher than that of the greedy algorithm. That is be-
cause unlike the greedy algorithm taking full use of the
channel resource to guarantee the transmission reliabili-
ty, the two proposed utility-optimization algorithms en-
hance the user requirements processing capability by
sacrificing the frequency efficiency. Furthermore, due
to the outstanding requirements processing capability,
the reliability performance of the two proposed algo-
rithms is significantly superior to the proportional rate
constraint algorithm and the RR algorithm.
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5 Conclusions

In this paper, two service-oriented DSA algo-
rithms; the first utility-optimization algorithm and the
second utility-optimization algorithm are proposed for
the uplink SC-FDMA system based on the utility theo-
ry. With the objective of satisfying the transmission re-
quirements of each user in the system, the two pro-
posed algorithms measure both CSI and transmission
capacity requirements of each user at the same time by
setting appropriate utility functions. Simulation resulis
indicate that the first utility-optimization algorithm can

achieve a good user requirements processing capability
with fairly low computational complexity. Thus, it is
applicable for the service-oriented applications with low
complexity demand. However, the system capacity of
the first algorithm is low. For further improving the al-
location performance, the second utility-optimization
algorithm is proposed by introducing SNR information
to the utility function. It is shown that with the slightly
increasing computational complexity, the second utili-
ty-optimization algorithm can achieve a betier trade-off
between system capacity requirements and capacity de-
mands of each user by taking fully use of CSI and
channel resource. Therefore, the second utility-optimi-
zation algorithm can effectively improve the user re-
quirements processing capability as well as achieve a
better sum-rate capacity.
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