文章摘要
何熊熊,王逸文,朱铮旸,陈强.二维桥式吊车自适应神经网络消摆控制[J].高技术通讯(中文),2022,32(5):454~461
二维桥式吊车自适应神经网络消摆控制
Adaptive neural network anti-swing control for two-dimension overhead crane
  
DOI:10.3772/j.issn.1002-0470.2022.05.002
中文关键词: 二维桥式吊车;自适应控制;滑模控制;神经网络;消摆控制
英文关键词: two-dimension overhead crane, adaptive control, sliding mode control, neural network, anti-swing control
基金项目:
作者单位
何熊熊 (浙江工业大学信息工程学院杭州 310023) 
王逸文 (浙江工业大学信息工程学院杭州 310023) 
朱铮旸 (浙江工业大学信息工程学院杭州 310023) 
陈强 (浙江工业大学信息工程学院杭州 310023) 
摘要点击次数: 340
全文下载次数: 299
中文摘要:
      针对含有未建模动态和不确定参数的二维桥式吊车系统,提出一种自适应神经网络消摆控制方法。首先,基于台车位移和摆角误差设计滑模变量,使得当滑模变量收敛至零时,各误差变量均能够收敛至零点,从而保证台车精确位置控制的同时消除负载摆动。其次,设计自适应神经网络控制器,利用神经网络逼近包含未建模动态和不确定参数在内的非线性不确定性,降低对系统模型的依赖性以及避免对其线性化处理。与基于模型的吊车控制方法相比,本文所提方法不依赖系统精确模型,且兼具滑模控制的鲁棒性。最后,通过二维桥式吊车实验对比验证了所提方法的有效性。
英文摘要:
      An adaptive neural network anti-swing control scheme is proposed for a two-dimensional overhead crane system with unmodeled dynamics and uncertain parameters. First of all, a sliding mode variable is designed based on the trolley displacement and swing angle error. When the sliding mode variable converges to zero, each error variable can also converge to zero, such that the accurate control of the trolley position and elimination of load swing can be guaranteed simultaneously. Secondly, an adaptive neural network controller is presented, and the nonlinear uncertainties including unmodeled dynamics and uncertain parameters are approximated by using neural networks. With the proposed controller, the dependence on the system model is reduced and the linearization of the model can also be avoied. Compared with the model-based crane control schemes, the proposed method is independent of the accurate system model, and has the robustness property of sliding mode control. Finally, the effectiveness of the proposed method is verified by a two-dimensional overhead crane experiment.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮