文章摘要
陈莹莹*,康艳**,李文法**,宏晨**.基于综合辨识信息的SLIC超像素分割算法[J].高技术通讯(中文),2021,31(8):816~823
基于综合辨识信息的SLIC超像素分割算法
SLIC superpixel segmentation algorithm based on comprehensive identification information
  
DOI:10.3772/j.issn.1002-0470.2021.08.004
中文关键词: 超像素分割; 聚类; 简单线性迭代聚类(SLIC); 辨识信息
英文关键词: superpixel segmentation, clustering, simple linear iterative clustering (SLIC), identification of information
基金项目:
作者单位
陈莹莹*  
康艳**  
李文法**  
宏晨**  
摘要点击次数: 184
全文下载次数: 171
中文摘要:
      简单线性迭代聚类算法(SLIC)作为目前主流的基于聚类的超像素分割算法,能产生形状规整的超像素,但是边界附着度不高,针对以上问题本文提出了基于综合辨识信息的SLIC超像素分割算法。该算法首先调整种子点的初始化选取方式,计算像素梯度值,扩大初始聚类中心的选取范围。其次在距离度量时,加入像素的边缘概率,以权重的方式加入到距离公式中,减少了像素的误分割现象。实验结果表明,本文方法与SLIC算法相比,在分割质量方面有明显提升;同时与其他几种算法相比,本文提出的算法可以有效地提高超像素的边界附着度,同时降低像素的分割错误率。
英文摘要:
      Simple linear iterative clustering (SLIC), as the current mainstream clustering-based superpixel segmentation algorithm, can produce superpixels with regular shapes, but the boundary adhesion is not high. In view of the above problems, a comprehensive SLIC super pixel segmentation algorithm for identifying information is proposed. The algorithm first adjusts the initial selection method of seed points, calculates the pixel gradient value, and expands the selection range of the initial cluster center. Secondly, when measuring the distance, the edge probability of the pixel is added, and it is added to the distance formula in the way of weight, which reduces the phenomenon of mis-segmentation of the pixel. The experimental results show that compared with the SLIC algorithm, the method in this paper has a significant improvement in segmentation quality. At the same time, compared with several other algorithms, the proposed algorithm can effectively improve the boundary attachment of superpixels, and at the same time reduce the segmentation error rate of pixels.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮